FastScript3D

A Companion to Java 3D

JavaScript XHTML Edition

Patti Koenig Koehler

Jet Propulsion Laboratory

California Institute of Technology

A Companion to Java3D

Note to Readers: This documentation is a draft Version. Several areas are incomplete. Pictures are as yet not done. Your input is truly appreciated. Please send your comments, suggestions and error reports to

Patti.Koenig@jpl.nasa.gov
Copyright November 18, 2002 by the California Institute of Technology. ALL RIGHTS RESERVED. United States Government Sponsorship Acknowledged. Any commercial use must be negotiated with the Office of Technology Transfer at the California Institute of Technology.

Table of Contents

31
Introduction

1.1
3D Web Applets
3
1.2
Hello World FastScript3D
3
1.3
The FastScript3D Language
6
1.4
A FastScript3D Model Template
8
2
Model Construction Commands
10
2.1
Style Attributes
10
2.2
Geometry Primitives
11
2.3
Part Placement
13
2.4
Motion Attributes
14
2.5
Command Practice
15
3
Animation Commands
18
3.1
Modifying Attributes
18
3.2
Creating Movement
22
3.3
Adding and Removing Parts
24
3.4
Simulation Sequencing
25
4
Creating Demonstrations
29
4.1
Organizing Your FastScript3D Scripts
29
4.2
Off-Line Testing
30
4.3
Part Transformations
34
5
Extension Commands
36
5.1
Creating New Commands
36
5.2
Picking Objects with the Mouse
43
5.3
Creating Custom Geometry
47
5.4
Geometry Loaders
60
Command Guide
65
Index
103

Introduction

1.1 3D Web Applets

Web pages can be greatly enhanced with interactive 3D graphics. Learning how to create such applets requires knowledge of several inter-acting languages, including XHTML, JavaScript, Java and Java3D. Piecing together all the required knowledge can be overwhelming at first. FastScript3D is a set of simplifying, high level commands designed to ease you into 3D applets.

Before applet development can proceed, you will need to verify that you can view Java3D applets. Sun Microsystems’ Java and Java3D are required and must be downloaded and installed. Verify appropriate setup by running the Java3D example applets provided by Sun. The applets should be viewable from within Microsoft Internet Explorer. Next, download FastScript3D from the FastScript3D web site and follow the installation instructions:

http://fastscript3d.jpl.nasa.gov
1.2 Hello World FastScript3D

This Hello-World example shows how FastScript3D works with XHTML, JavaScript and Java3D. The example creates a web page with a Java3D applet embedded in it. If you click the Hello World button in the web page, the embedded applet will display a continuously rotating texture mapped Earth.

The first file you see is an XHTML file. At the beginning of the file you can see where the button and embedded Java3D applet are defined. The applet to be invoked is the Java class HelloWorld.class. The applet is going to be loaded into the web page and displayed in a 275x275 space. Since the applet uses the FastScript3D classes, the FastScript3D jar file (fs.jar) needs to be in the same directory as HelloWorld.html and HelloWorld.class. Texture maps used by the model should be placed in a directory called FS_TEXTURE.

Next you will see several JavaScript functions. When using scripting within your HTML file, always surround your script code with the appropriate SCRIPT tag. When the button is pressed, the JavaScript function “DemoEarth” is called. It creates a 3D texture mapped Earth, describes it’s rotating behavior and starts the animation. The text strings that are sent to the JavaScript function “parse”, are FastScript3D commands. The name “fs3d” is assigned to the applet. The parse method sends the commands on to the Java3D applet using the notation

fs3d.parse(“# Your FastScript3D command”);

A result status is returned from the applet. The result comes back as a wrapped JavaScript “Object”. The FastScript3D result string can be obtained from the object by adding “” to it.

Multiple commands can be sent to the parser using the forward slash separater

fs3d.parse(“# Your first command / # Your second command”);

or using the parsecr routine, which allows commands separated by carriage returns

fs3d.parsecr(“#Your first command \n #Your second command”);

The result status for multiple commands will be the result of the last command in the sequence.

The second file is a Java3D applet. The applet extends the class FS3D, which is the FastScript3D engine class. Applets always have an initialize routine called “init”. In the init routine you will set up your FastScript3D environment by calling the “fs3dinit” method. The FastScript3D engine has a parse method in it, which carries out any FastScript3D command it receives. The engine also has an add-parser method that enables new commands to be implemented in Java3D and added to the engine.

HelloWorld.html

<title>FastScript3D - Hello World</title>

FastScript3D

<FORM name="HelloWorld">

<!-- press button to start demo -->

<input type="button" value="HelloWorld"

 onclick="DemoEarth();">

<!-- defines the FastScript3D applet -->

<applet align=middle

 name="fs3d" code="HelloWorld.class"

 archive="fs.jar"

 width="275" height="275">

<blockquote> <hr>

If you were using a Java-capable browser,

you would see the graphics window here.

</hr>< /blockquote>

</applet>

</FORM>

<SCRIPT LANGUAGE="JavaScript">

 <!-- send commands on to FastScript3D -->

 function parse(s) {

 var resultWrapper = fs3d.parse(s);

 var result = resultWrapper + “”;

 <-- result contains the status string returned from FastScript3D -->

 }

 <!-- creates planet Earth -->

 function ModelEarth() {

 parse("MODELCLEAR");

 parse("NAME Earth");

 parse("HINGE 0 1 0");

 parse("GEOMRECT 1 1 1");

 parse("TEXTURE Earth.jpg");

 parse("GEOMSPHERE 0.5");

 parse("MODELBUILD");

 }

 <!-- describes Earth rotation -->

 function SimEarth() {

 parse("SIMNAME EarthRotate");

 var count = 0;

 for (var i=0; i<36; i=i+2) {

 parse("FNUM " + count + " RR Earth " + 3)

 count++;

 }

 }

 <!-- demo shows Earth continously rotating -->

 function DemoEarth() {

 ModelEarth();

 SimEarth();

 parse("PLAYAUTOON");

 parse("PLAYRUN");

 }

</SCRIPT>

HelloWorld.java

// FastScript3D Java3D Applet

import java.applet.Applet;

import com.sun.j3d.utils.applet.MainFrame;

import fscore.fastscript.*;

import fscore.fastscript3d.*;

public class HelloWorld extends FS3D {

 public void init() {

 fs3dinit();

 }

 public static void main(String[] args) {

 new MainFrame(new HelloWorld(),400,400);

 }

}

1.3 The FastScript3D Language

FastScript3D was developed by the author of this text, at NASA's Jet Propulsion Laboratory, California Institute of Technology. The FastScript3D language is a collection of one-line text string commands. The first word in a text string command is the command name; the rest of the text string contains the data arguments for the command. The language provides a set of extensible commands for creating 3D models and animating them.

The text string commands of FastScript3D always follow the same format. Commands consist of a capitalized keyword followed by the arguments for the command. A FastScript3D command is of the form:

KEYWORD <command arguments>

For example:

TEXTURE Earth.jpg

FastScript3D commands always returns a text string result. The return string represents the status or result of the command. The command keyword for a return command that was successful is the string "1". If the command was not successful the return command keyword is the string "0". The next arguments in the result string echo the command name and relevant arguments. The result string for the TEXTURE command is:

1 TEXTURE Earth.jpg

FastScript3D commands that query for current data values also return result data as arguments in the result string. Query commands end with “GET”. Result strings are of form:

1 <command arguments results>

For example, the FastScript3D command for obtaining an objects texture map is:

TEXTUREGET

If the command succeeds, it returns a string of 1, along with the appropriate result arguments:

1 TEXTUREGET Earth.jpg

If the command fails, a string of 0 is returned, along with an appropriate error message:

0 TEXTUREGET no currently referenced part

Texture images are assumed to be in a local directory called FS_TEXTURE.

If you are trying to use a command and are not seeing the result you expect, you should always check the result string.

1.4 A FastScript3D Model Template

A FastScript3D model includes all of the physical objects you want to put in your Java3D world, or scene. Each object in your scene is referred to as a part. A part is an individual component of the scene that has a physical shape and other attributes which describe it such as color, size, position and orientation. To create a part, you need to define it by giving it a name. You also need to connect your part to another part, which becomes its parent. Then you can specify things like its color and physical shape or geometry.

The MODELCLEAR command starts a new model. By default, the model has a very first part, which is called “Inertial”. Now you can make a new part and connect it to the model. The NAME command creates a new part. The PARENT command specifies the parent of the part. If no parent is specified, the parent is assumed to be Inertial. The MODELBUILD command tells FastScript3D to make the scene out of the parts you have defined and display it.

The example below shows a web page that contains a button and embedded FastScript3D applet. Pressing the button calls the JavaScript “model” function, which creates a texture mapped Earth using FastScript3D commands. Using this template, you can experiment with model construction by modifying the commands in the model function to try out various commands introduced in Chapter 2. Be sure to reload your web page after editing the XHTML file to see the results.

Model.html

<!-- Model Making Practice Template -->

<title>FastScript3D - Model Template</title>

Model Making Practice Template

<FORM name="Model">

<!-- press button to call model creation function -->

<input type="button" value="Model"

 onclick="model();">

<!-- defines the FastScript3D applet -->

<applet align=middle

 name="fs3d" code="Model.class"

 archive="fs.jar"

 width="275" height="275">

<blockquote> <hr>

If you were using a Java-capable browser,

you would see the graphics window here.

</hr>< /blockquote>

</applet>

</FORM>

<!-- uses scripting language -->

<SCRIPT LANGUAGE="JavaScript">

 <!-- send commands on to FastScript3D -->

 function model() {

 fs3d.parse("MODELCLEAR");

 fs3d.parse("NAME Earth");

 fs3d.parse("HINGE 0 1 0");

 fs3d.parse("MOVABLE");

 fs3d.parse("TEXTURE Earth.jpg");

 fs3d.parse("GEOMSPHERE 0.5");

 fs3d.parse("MODELBUILD");

 }

</SCRIPT>

Model.java

import java.applet.Applet;

import com.sun.j3d.utils.applet.MainFrame;

import fscore.fastscript.*;

import fscore.fastscript3d.*;

public class Model extends FS3D {

 public void init() {

 fs3dinit();

 }

 public static void main(String[] args) {

 new MainFrame(new Model(),400,400);

 }

}

2 Model Construction Commands

This Chapter shows how 3D models can be quickly created using FastScript3D. A 3D model or scene is created out of individual parts. Each part in the scene can have a physical shape or geometry, as well as other attributes including color, size, position and orientation.

2.1 Style Attributes

The COLOR command will let you give your part a color. Color can be specified by its name, or by the desired red, green and blue (RGB) components. RGB values should be between zero and one.

COLOR blue

Or

COLOR 0 0 1

A material is a more glamorous color that can have a custom reflective or shiny look to it. Commands that define materials begin with “MAT”. Chapter 5 shows you how to create your own custom materials.

MATGOLD

If you set a material for a part, the default result is that the COLOR command will get ignored and the color that is inherent in the MATERIAL command will take over. If, however, you want to allow your COLOR command color to seep into material that you are using, then you can use the MATSEEPON command. This creates a bluish gold effect:

COLOR 0 0 1

MATGOLD

MATSEEPON

FastScript3D sets up a default light to make the objects in your scene look nice. For some parts, however, you may not want to apply lighting when rendering that part. Lines and points, for example, tend to render better without lighting applied to them. To ignore lighting setup when rendering a part, use the PLAINLIGHTON command.

NAME plainlitbox

PLAINLIGHTON

GEOMRECT 1 1 1

To make a material transparent use the OPACITY command. The opacity can range from zero to one. OPACITY of zero makes a part’s geometry completely opaque. Opacity of one makes a parts’ geometry completely transparent. The default opacity is zero.

NAME seethroughbox

OPACITY 0.8

GEOMRECT 1 1 1

If your parts geometry can be texture covered, use the TEXTURE command to specify the name of your (JPEG) image that you want to use. Texture files should be placed in a local directory called FS_TEXTURE.

TEXTURE Earth.jpeg

Use the MATSEEPOFF if you do not want current color or materials to blend with the texture.

TEXTURE Earth.jpeg

 MATSEEPOFF

To set the default writing font for a part that has text as part of its geometry, use the FONT command. This sets the default FONT to be (12 point) times.

FONT times

If you want your part to be initially invisible, use the INVISIBLE command:

INVISIBLE

2.2 Geometry Primitives

A geometry primitive is the physical 3D object that is associated with the part. Commands that specify the physical shape of the part are called Geometry commands. Geometry commands start with GEOM. The default shapes provided by FastScript3D are very basic. It is expected that you will add your own geometry shapes, or primitives, to the collection. Geometries can also be loaded from common 3D data formats, such as Wave Front (.obj files). Chapter 5 shows you how to create your own custom geometries.

If you do not want your part to have any shape associated with it, or if you want to erase the current shape of your part, use the GEOMNULL command. If no geometry is specified for a part, it is assumed to be null.

GEOMNULL

This will create a 3D box of the desired dimension:

GEOMBOX 1.5

This will create a 3D rectangle of the desired dimension in (x,y,z):

GEOMRECT 1 3 1.5

This will create a sphere of the desired radius:

GEOMSPHERE 1.0

This will create an ellipse of the desired radius in (x,y,z):

GEOMELLIPSE 1 1.3 1.3

This will create a coordinate axis. The first argument gives the length of the axes follow by the desired x, y, and z text label

GEOMAXIS 5 probe-X probe-Y probe-Z

This will create a cylinder. Its desired top radius, bottom radius and length define the cylinder. It also specifies the number of sides to use in making the cylinder.

GEOMCYL 2 3 4 20
To create a text label, use the GEOMTEXT command with the desired text string as an argument. The GEOMTEXT command uses whatever font has been set with the FONT command.

GEOMTEXT This is my text label

The GEOMLABEL command creates a text label that remains facing forward at all times.

GEOMLABEL This is my text label

The GEOMOBJ command reads the geometry in from a specified Wave Front file. The GEOMOBJ command is implemented using Sun’s WaveFront file loader that is included with Java3D. New GEOM commands can be added to utilize loaders for other geometry file formats, such as X3D.

GEOMOBJ galleon.obj

Scaling commands let you shrink or grow your part to the size you want. Scaling commands start with SCALE. SCALEPRE is the most basic scaling command that scales the shape by the desired amount.

SCALEPRE 0.5

A tree version of the scale command, SCALETREE, enables you to scale an entire sub-tree in your model instead of scaling just a single part's geometry.

If you want to be able to click on the part with the mouse, use the PICKON command. Pick-able parts, when clicked on with the mouse, are detected by FastScript3D. A command called PICKED is generated and enables the desired action to occur when your pick-able parts are clicked. Use PICKOFF to turn picking off for a part. PICKOFF is the default setting for parts.

PICKON

2.3 Part Placement

Use the OFFSET command to place your part in the desired initial location. The default location when none is specified is (0,0,0). The offset is with respect to the parent part. Any object that you later plan to move independently in the scene needs to be specified as movable with the MOVABLE command.

MOVABLE

If a part is not oriented the way you want, you can use the orientation commands to orient it differently. Orientation commands start with ORIENT. ORIENTZ is the most basic orientation command that orients the parts Z-axis to be along some other axis that you desire. The orientation of the axis you desire is defined by providing a vector (x,y,z). The ORIENTZ command affects only the orientation of the parts geometry and has no effect on the children of the part.

function model()

{

 fs3d.parse(“MODECLEAR”);

 fs3d.parse(“NAME cylinder”);

 fs3d.parse(“ORIENTZ 1 0 0”);

 fs3d.parse(“GEOMCYL 4 1 1 “);

 fs3d.parse(“MODELBUILD”);

}

To provide a more complete orientation with ORIENTZ, you can use also defines an angular twist about the axis by a specified number of degrees. This command orients the cylinder along the x-axis and then rotates it around the x-axis by thirty degrees;

ORIENTZ 1 0 0 30.0

You might want to specify orientation using a direction cosine matrix which species first the x, then the y then the desired z orientation axis:

ORIENTDCM 0 0 1 0 1 0 1 0 0

Another way to specify orientation is with a quaternion:

ORIENTQ 0.63 0.32 0.62 0.32

A tree version of the five orientation commands will let you rotate an entire sub-tree in your model instead of orienting just a single part's geometry. The syntax is the same as for the regular orient commands; ORIENTTREEZ, ORIENTTREEDCM, and ORIENTQ.
When specifying a parts parent, think of whom you want that part to move along with when you start to add movement. Lets say that you are going to create a red spacecraft made out of two cylinders which represent the main base body and the antenna. The spacecraft antenna is specified as a child of the base body part because it is attached and moves with the base body.

function redspacecraft()

{

 fs3d.parse(“MODELCLEAR”);

 fs3d.parse(“NAME basebody”);

 fs3d.parse(“MOVABLE”);

 fs3d.parse(“COLOR red”);

 fs3d.parse(“ORIENTZ 0 1 0”);

 fs3d.parse(“GEOMCYL 0.2 0.2 0.5 20”);

 fs3d.parse(“NAME antenna”);

 fs3d.parse(“PARENT basebody”);

 fs3d.parse(“OFFSET 0 –0.3 0”);

 fs3d.parse(“ORIENTZ 0 1 0”);

 fs3d.parse(“MATSILVER”);

 fs3d.parse(“GEOMCYL 0.2 0.4 0.2 20”);

 fs3d.parse(“MODELBUILD”);

}

2.4 Motion Attributes

If you plan to move a part around in the scene, use the movable command:

MOVABLE

If you plan to articulate a part in the scene, you will define a hinge for the part. Articulated parts are those that allow rotation about a specified axis. A vector that represents the axis about which this part is going to be rotating during animation defines the hinge. The axis can be arbitrary and is not limited to just the x, y or z-axis. When you articulate the hinge during animation, the part and all of the part's descendants are going to go with the motion. This hinge definition enables articulation of the part and its sub-tree about the z-axis:

HINGE 0 0 1

2.5 Command Practice

This example provides a text entry using a text-area in a XHTML page along side a Java3D Applet window. It lets you practice typing in FastScript3D commands and seeing the result in the graphics window.

Two text entry pads are defined. The input pad is where you type in the desired FastScript3D commands, and the result pad displays the status strings returned from FastScript3D. The function “initpads” initializes the input pad to display a box. The function “clearpads” clears the input and result pads.

Three buttons are defined. The first button sends the commands in the input pad to the FastScript3D applet’s parser method that executes them. The second button clears all text from the input and result pad. The restore button resets the input and text pads to original values, that of a simple box model.

 Commands.html

<title>FastScript3D - Command Parsing Practice</title>

Practice Sending Simple Commands to Your Java3D Applet

<SCRIPT LANGUAGE="JavaScript">

 function parse(input) {

 var results = input.split("\n");

 for (var i=0; i<results.length; i++) {

 var resultWrapper = fs3d.parse(results[i]);

 var result = resultWrapper + "";

 commandpad.result.value =

 commandpad.result.value + "\n" + result;

 }

 }

 function clearpads() {

 commandpad.input.value = "";

 commandpad.result.value = "";

 }

 function initpads() {

 commandpad.input.value =

 "# Type commands here\n" +

 "MODELCLEAR\n" +

 "NAME cube \n" +

 "COLOR blue\n" +

 "GEOMRECT 0.5 0.5 0.5\n" +

 "MODELBUILD";

 commandpad.result.value =

 "# Results will display here";

 }

</SCRIPT>

<FORM name="commandpad">

<textarea name="input"

 cols=30 rows=5>

</textarea>

<textarea name="result"

 cols=30 rows=5>

</textarea>

<SCRIPT LANGUAGE="JavaScript">

initpads();

</SCRIPT>

<applet align=middle

 name="fs3d"

 code="Commands.class"

 archive="fs.jar"

 width=250

 height=250>

<blockquote> <hr>

If you were using a Java-capable browser,

you would see a graphics window instead of this paragraph.

</hr></blockquote>

</applet>

<input type="button" value="Send"

 onclick="parse(commandpad.input.value);">

<input type="button" value="Clear"

 onclick="clearpads();">

<input type="button" value="Restore"

 onclick="initpads();">

</FORM>

Commands.java

import java.applet.Applet;

import com.sun.j3d.utils.applet.MainFrame;

import fscore.fastscript.*;

import fscore.fastscript3d.*;

public class Commands extends FS3D {

 public void init() {

 fs3dinit();

 }

 public static void main(String[] args) {

 new MainFrame(new Commands(),400,400);

 }

}

Animation Commands

Now that you have built a model, you are ready to put it into motion. This chapter shows you some of the commands that let you move and articulate your model using the movable and hinged parts you have defined.

2.6 Modifying Attributes

FastScript3D models can be built and modified dynamically using the various animation commands. Parts attributes and geometry can be modified. The following template defines a simple spacecraft model. The spacecraft is composed of a cylinder, two solar panel arms and two solar panels. The commands to create the spacecraft appear in an input text pad in the defined web page. The “Build Model” button will execute the commands in the pad and build the spacecraft. The spacecraft is displayed in the FastScript3D applet embedded in the page. A second text pad, called “animate” is also displayed. The “Animate” button will execute the commands contained in the animate text input pad.

Scripted.html

<title>FastScript3D - Scripted Command Practice</title>

<FORM name="form">

<!-- model pad -->

<textarea name="modelpad"

 cols=50 rows=5>

fs3d.parse("MODELCLEAR");

fs3d.parse("NAME basebody");

fs3d.parse("MOVABLE");

fs3d.parse("MATSILVER");

fs3d.parse("ORIENTZ 0 1 0");

fs3d.parse("GEOMCYL 0.22 0.22 0.4 8");

fs3d.parse("NAME righthinge");

fs3d.parse("PARENT basebody");

fs3d.parse("OFFSET 0.2 0 0");

fs3d.parse("HINGE 1 0 0");

fs3d.parse("MATGOLD");

fs3d.parse("GEOMRECT 0.4 0.03 0.03");

fs3d.parse("NAME rightpanel");

fs3d.parse("PARENT righthinge");

fs3d.parse("OFFSET 0.3 0 0");

fs3d.parse("HINGE 1 0 0");

fs3d.parse("COLOR blue");

fs3d.parse("GEOMRECT 0.4 0.8 0.05");

fs3d.parse("NAME lefthinge");

fs3d.parse("PARENT basebody");

fs3d.parse("OFFSET -0.2 0 0");

fs3d.parse("HINGE 1 0 0");

fs3d.parse("MATGOLD");

fs3d.parse("GEOMRECT 0.4 0.03 0.03");

fs3d.parse("NAME leftpanel");

fs3d.parse("PARENT lefthinge");

fs3d.parse("OFFSET -0.3 0 0");

fs3d.parse("HINGE 1 0 0");

fs3d.parse("COLOR blue");

fs3d.parse("GEOMRECT 0.4 0.8 0.05");

fs3d.parse("MODELBUILD");

</textarea>

<!-- build and restore the model buttons -->

<input type="button" value="Build Model"

 onclick="build();">

<!-- animate pad -->

<textarea name="animatepad"

 cols=50 rows=5>

fs3d.parse(“RR leftpanel 3 / RR rightpanel –3”);

fs3d.parse("REFER basebody");

fs3d.parse("MATGOLD");

fs3d.parse("REFER rightpanel");

fs3d.parse("COLOR red");

fs3d.parse("REFER leftpanel");

fs3d.parse("COLOR red");

</textarea>

<!-- animate and clear the animation buttons -->

<input type="button" value="Animate"

 onclick="animate();">

<!-- create the applet -->

<applet align=middle

 name="fs3d"

 code="Scripted.class"

 archive="fs.jar"

 width=275

 height=275>

<blockquote> <hr>

If you were using a Java-capable browser,

you would see a graphics window instead of this paragraph.

</hr></blockquote>

</applet>

</FORM>

<SCRIPT LANGUAGE="JavaScript">

 function animate() {

 eval(this.document.form.animatepad.value);

 }

 function build() {

 var input = this.document.form.modelpad.value;

 eval(input);

 }

</SCRIPT>

Scripted.java

import java.applet.Applet;

import java.awt.*;

import java.awt.event.*;

import com.sun.j3d.utils.applet.MainFrame;

import com.sun.j3d.utils.universe.*;

import javax.media.j3d.*;

import javax.vecmath.*;

import fscore.fastscript.*;

import fscore.fastscript3d.*;

public class Scripted extends FS3D {

 public void init() {

 fs3dinit();

 }

 public static void main(String[] args) {

 new MainFrame(new Scripted(),400,400);

 }

}

The initial commands in the animate pad sets the solar panel rotations and changes the color of the base body and solar panels. You can experiment with animation commands by replacing the commands in the animate pad to try out various animation commands. To get at a part you want to make attribute changes to, use the REFER command. This will point FastScript3D at the part you want to change. Then make the changes to the part that you want.

REFER basebody

MATGOLD

REFER rightpanel

COLOR red

REFER leftpanel

COLOR red

The commands in the text pads are sent through the JavaScript evaluator. This allows you to use JavaScript variables and loops in the text input. Make sure to use the fs3d.parse function call on the FastScript3D command strings so that they are evaluated correctly. For example:

name = “basebody”;

mat = “MATBRONZE”;

fs3d.parse(“REFER “ + name);

fs3d.parse(mat);

One common animation operation is to turn a part on or off. To turn a part off, making it invisible, use the OFF command:

OFF basebody

To make the part visible again:

ON basebody

To make the part and all of the descendants of the part invisible, use the OFFALL command:

OFFALL basebody

To make the part and all of the descendants of the part visible again, use the ONALL command:

ONALL basebody

There are a number of FastScript3D commands that control general settings and miscellaneous parameters. To set the background color of your FastScript3D applet, use the BGCOLOR command.

BGCOLOR blue

Or

BGCOLOR 0 0 1

The FONTALL command can be utilized to set the desired default font. The font command includes the font name, style (plain is zero, bold is one, italic is two) and desired point size. For example, to set the default font to italic Helvetica:

FONTALL Helvetica 2 1

 To turn the overall lighting on or off use

LIGHTON

Or

LIGHTOFF

To set the initial viewing distance, use the VIEWER command:

VIEWER 10

To reset the viewing position, use the reset command:

RESET

The hash character is the command keyword for a comment:

This is a comment and has no effect
2.7 Creating Movement

Parts that you defined as movable can be moved with a translation command. An absolute translation command TA moves your part to a desired (x,y,z) location. A relative translation command TR moves the part incrementally from its current position. This command translates the spacecraft up the Y-axis: to (0,0.1,0):

TA basebody 0 0.1 0

This command translates the spacecraft incrementally from there:

TR basebody 0 0.1 0

This command translates the spacecraft up the Z-axis:

TA basebody 0 0 0.1

This command translates the spacecraft incrementally from there:

TR basebody 0 0 0.1

This loop translates the spacecraft right:

fs3d.parse("TA “ + basebody + “ 0 0 0");

incx = 0.1;

incy = 0.0;

incz = 0.0;

for (var i=0; i<25; i++) {

fs3d.parse("TR basebody " + incx + " " + incy + " " + incz);

}

Articulating models have hinge parts in them. Hinge parts allow rotation about a specified axis thereby rotating all of their child parts about that axis. The commands to do the rotating are called rotation commands. An absolute rotation rotates your hinge by a given number of degrees from its nominal placement. A relative rotation rotates your hinge by a given number of degrees from its current placement.

Our spacecraft model defines two hinges that enable rotation of the solar panels. Rotation of the right hinge will cause the right solar panel to revolve and rotation of the left hinge will cause the left solar panel to revolve. The RA command does an absolute rotation. This RA command will rotate the right hinge to 90 degrees rotation.

RA righthinge 90

The RR command does a relative rotation from the current placement. This RR command will rotate the right hinge four degrees from its current location.

RR righthinge 4

In order to move several objects at the same time, you need to make two or more commands appear to be happening simultaneously. To achieve this affect you can ask Java3D to stop and wait for you to move what you need to before redisplaying the scene. This can be accomplished by placing your commands on the same line separated by a command separating delimiter. The default separator is the forward slash (/).

An equivalent effect is achieved by sandwiching the desired simultaneous commands between a STOP and a START command. Either approach achieves the desired effect of making it appear that things are moving simultaneously. You want to stop the display, update what you need to, and then start and show the result. This rotates both solar panels together:

RR righthinge 3 / RR lefthinge 3

This achieves the same result:

STOP

RR righthinge 0 3 0

RR lefthinge 0 3 0

START

2.8 Adding and Removing Parts

You may want to dynamically add new parts or delete existing parts from your model. To add a new part, first create a record for the new part with the NAME command. Then set the rest of the parts attributes as you normally would when making a model. Finally, use the ADD command to build the part you have defined into the model. For example, this segment adds an instrument box and camera to the spacecraft model.

NAME instrumentbox

PARENT basebody

OFFSET 0 0.25 0.0

MATCOPPER

GEOMRECT 0.17 0.17 0.17

ADD instrumentbox

NAME camera

PARENT instrumentbox

OFFSET 0 0.02 0.11

COLOR yellow

GEOMRECT 0.08 0.08 0.08

ADD camera

Alternatively, you can skip the ADD command and use the MODELBUILD command to rebuild the entire model with the new parts included.

NAME instrumentbox

PARENT basebody

OFFSET 0 0.25 0.0

MATCOPPER

GEOMRECT 0.17 0.17 0.17

NAME camera

PARENT instrumentbox

OFFSET 0 0.02 0.11

COLOR yellow

GEOMRECT 0.08 0.08 0.08

MODELBUILD

To delete a part from your model that has no children attached to it, use the DELETE command.

DELETE camera

To delete a part from your model that does have children attached to it, use the DELETEALL command. The part and all of the part’s descendents will be deleted.

DELETEALL instrumentbox

2.9 Simulation Sequencing

Once you can build models, and are able to move things around the scene, you are ready for basic animation sequencing. Animation sequencing lets you define a sequence of moves and load them into simulation memory so that they can be replayed.

Moving individual objects in your scene can be done with the translation commands TA and TR. Articulating hinged objects can be done with the rotation commands RA and RR. Remember that TA and TR commands work on parts that are defined as MOVABLE. RA and RR commands work on parts that have hinges defined using the HINGE commands.

Suppose you wanted to create an animation to revolve your spacecraft 360 degrees about the y-axis. You can store the animation as a sequence of moves that can be replayed as desired. Creating an animation sequence is useful because it puts your steps into what you can think of as a tape recorder. With your sequence on tape, you can do things like step through it, skip steps, restart it, or play it over and over.

Animated sequences are created using simulation sequencing. A simulation structure stores a sequence of motion. Each step in a sequence is called an animation frame. Each animation frame contains one or more text commands that are to be executed for that one frame. A simulation sequence is defined by giving it a name and size. The size argument is optional and specifies the default expected number of frames for the sequence. For example,

SIMNAME yrotate 360

After the simulation size is defined you fill each frame with the desired commands that you want to get executed for that frame. All of the commands in a frame are executed simultaneously. They are automatically sandwiched between a STOP and START command by the FastScript3D simulation player. After you have defined your simulation of the desired size, you can fill in the commands one frame at a time. The FNEXT command can be used to sequentially fill in each frame starting from frame zero. The following creates a simulation named “revolvey” which revolves the basebody 360 degrees about the y axis. The PLAYRUN command plays the defined sequence.

fs3d.parse(“REFER basebody HINGEFULL”);

fs3d.parse("SIMNAME revolvey");

for (var i=0; i < 360; i++) {

 fs3d.parse("FNEXT RR1 basebody 1");

}

fs3d.parse("PLAYRUN");

An alternative but equivalent way to fill in the simulation is with the FNUM command. The FNUM command gives the frame number or location in the tape where to put the command. This is often handier than FNEXT, which assumes the next frame to fill in is the next frame in the tape. FNUM lets you fill in the tape in random order.

fs3d.parse("SIMNAME revolvey");

for (var i=0; i < 360; i++) {

 fs3d.parse("FNUM " + i + " RR1 basebody 1");

}

fs3d.parse("PLAYRUN");

The following sequence also revolves the solar panels in opposite directions.

fs3d.parse("SIMNAME revolvey 360");

for (var i=0; i < 360; i++) {

 fs3d.parse("FNUM " + i + " RR1 basebody 1");

 fs3d.parse("FNUM " + i + " RR righthinge 1");

 fs3d.parse("FNUM " + i + " RR lefthinge -1");

}

fs3d.parse("PLAYRUN");

The playback commands enable you to play, stop, start, reset, or play a single frame of a specified sequence. The PLAYRUN command is used to start playing, or animating entire sequence.

PLAYRUN

Your sequence runs in a Java thread, so you can interrupt and stop the playing with the PLAYSTOP command:

PLAYSTOP

PLAYRESET resets the simulation to frame zero. It also plays, or executes the commands in frame zero:

PLAYRESET

You may want the sequence, when it reaches the last frame, to cycle back to frame zero and replay automatically. Use the PLAYAUTOON command for continuous play.

PLAYAUTOON

If you want your sequence to stop after it plays the last frame, use PLAYAUTOOFF. PLAYAUTOOFF is the default mode.

PLAYAUTOOFF

To jump to a given frame use the PLAYSETFRAME. Note that PLAYSETFRAME only positions the player on that frame but it does not execute the commands in that frame. This sets the frame to 10.

PLAYSETFRAME 10

To actually play the frame that you are currently on, and then move to the next frame, use the PLAYNEXT command. It plays the current frame, and moves onto the next frame.

PLAYNEXT

If you want to skip frames in your sequence to speed up the play, you can specify the number of frames to skip when playing. To skip three frames set the play speed to three. This would play a sequence as frame 0, frame 3, frame 9, frame 12, etc. It is important to note that the frames that are skipped do not get executed. For example, if you had a command to turn off a part at frame two, the command would get missed. If you expect to skip frames when playing, you have to be careful when creating your simulation. For example, if you are turning a part off and on in your simulation, you would want to add a command to all frames stating on/off status of the part to make sure that missed commands do not adversely affect your simulation.

PLAYSPEED 3

To go back to the normal play speed where no frames are skipped, be sure to set the play speed back to zero:

PLAYSPEED 0

You can create and run multiple simulation sequences simultaneously. Each sequence runs in a separate Java Thread. To reference a sequence use the command REFERSIM:

REFERSIM revolvey

PLAYRUN

3 Creating Demonstrations

3.1 Organizing Your FastScript3D Scripts

Now that you can build models and create animations, you may be amassing quite a few models and simulation scripts that you want to save and use later. This section discusses ways to organize your collection and presents the expected conventions for organizing the information.

In general, it is desirable to separate your 3D models, animations and various setup scenarios. The three script types are called models, simulations and demonstrations. A model script defines a 3D model. A simulation script defines an animation sequence. A demonstration script sets up a scenario. A demonstration script might load in a given model and simulation scripts, set up the desired viewing and start an animation sequence. By separating the three types of scripts you maximize your ability to mix and match them. For example, you might have ten simulation scripts, all of which use the same 3D model.

FastScript3D assumes that scripts are located in specific directories. 3D model scripts and data should be stored in the FS_MODEL directory. 3D simulation scripts and data should be stored in the FS_SIM directory. Demonstration scripts should be stored in the FS_DEMO directory. Texture images should always be stored in the FS_TEXTURE directory.

To organize your scripts and reduce the complexity of your HTML files, you can move JavaScript functions out of your HTML code and store them in a JavaScript file. JavaScript files end in “.js”. You can then source in the JavaScript functions using the “src” attribute. Once a JavaScript file is sourced in, the functions it contains may be utilized as though they appeared directly in the HTML file. For example, to source in the JavaScript functions defined in a file called “\FS_MODEL\mymodel.js”:

<script language=”JavaScript” src=”.\FS_MODEL\mymodel.js”></script>

When creating FastScript3D web applications, be sure to place the FastScript3D jar file (fs.jar), Html files and Java files in the desired access directory on your web site. Create the following sub-directories under it and place relevant FastScript3D scripts and in the appropriate areas. A summary of directories to create is:

· FS_MODEL – All model scripts and related data files should be stored in this directory

· FS_SIM – All simulation scripts and related data files should be stored in this directory

· FS_DEMO – All setup scenario scripts should be stored in this directory

· FS_TEXTURE – All texture images should be stored in this directory

When your model describes one primary movable object, the FastScript3D convention is to name that object “basebody”. While not required, the convention is convenient for simple mixing and matching of elementary models and simulations. Suppose you have a simple animation sequence that rotates an object called basebody by 360 degrees so all sides of it can be seen. Any of your models that name the main part basebody can utilize the simulation.

3.2 Off-Line Testing

You may want to do some FastScript3D development outside of the web browser environment. For example, you might be creating a new geometry primitive and would like to test and develop it before integrating it into your web pages. You might want to work on your 3D scene off-line to begin with. You might be building a stand-alone Java application. Just as you can embed FastScript3D commands into JavaScript, you can embed commands directly into your Java Code. The following example creates a simple model and runs the example as a Java application.

// FastScript3D Java3D Applet

import java.applet.Applet;

import com.sun.j3d.utils.applet.MainFrame;

import fscore.fastscript.*;

import fscore.fastscript3d.*;

public class offline extends FS3D {

 public void init() {

 fs3dinit();

 parse(“MODELCLEAR”);

 parse(“NAME Earth”);

 double spheresize = 1.0;

 parse(“GEOMSPHERE ” + spheresize);

 parse(“TEXTURE Earth.jpg”);

 parse(“MODELBUILD”);

 }

 public static void main(String[] args) {

 new MainFrame(new offline(),400,400);

 }

}

To compile and run offline:

javac offline.java

java offline

If you are making numerous changes to your model it can be cumbersome to recompile after every incremental change. An alternative is to place your commands in a simple model file. After making alterations to the model file you can simply reload the file. The MODEL command will read in and execute FastScript3D commands that are stored in a file. No scripting in the file is allowed, and the file should be placed in a local FS_MODEL directory where FastScript3D will look for it. Simple model files by convention should end in .g so they are not confused with JavaScript or other files.

Offline.java

// FastScript3D Java3D Applet

import java.applet.Applet;

import com.sun.j3d.utils.applet.MainFrame;

import fscore.fastscript.*;

import fscore.fastscript3d.*;

public class Offline extends FS3D {

 public void init() {

 fs3dinit();

 parse(“MODEL Earth.g”);

 }

 public static void main(String[] args) {

 new MainFrame(new Offline(),400,400);

 }

}

FS_MODEL\Earth.g

NAME Earth

TEXTURE Earth.jpg

GEOMSPHERE 1.0

NAME Axis

COLOR red

GEOMAXIS 1.5 X Y Z

The MODELSOURCE command can be used to load in several simple model files, each of which might contain sub-components of a model under development. For example:

Offline.java

// FastScript3D Java3D Applet

import java.applet.Applet;

import com.sun.j3d.utils.applet.MainFrame;

import fscore.fastscript.*;

import fscore.fastscript3d.*;

public class Offline extends FS3D {

 public void init() {

 fs3dinit();

 parse(“MODELCLEAR”);

 parse(“MODELSOURCE Earth.g”);

 parse(“MODELSOURCE Axis.g”);

 parse(“MODELBUILD”);

 }

 public static void main(String[] args) {

 new MainFrame(new Offline(),400,400);

 }

}

FS_MODEL\Earth.g

NAME Earth

TEXTURE Earth.jpg

GEOMSPHERE 1.0

FS_MODEL\Axis.g

NAME Axis

COLOR red

GEOMAXIS 1.5 X Y Z

Simple simulation sequences can be stored in a file and read in with the SIM command. Simple simulation files should not contain scripting, should end in “.sim” and should be placed in a local directory called FS_SIMS. Simple demonstrations can be stored in a file and read in with the DEMO command. Simple demonstration files should not contain scripting, should end in “.demo” and should be placed in a local directory called FS_DEMO.

Offline.java

// FastScript3D Java3D Applet

import java.applet.Applet;

import com.sun.j3d.utils.applet.MainFrame;

import fscore.fastscript.*;

import fscore.fastscript3d.*;

public class Offline extends FS3D {

 public void init() {

 fs3dinit();

 parse(“DEMO Simple.demo”);

 }

 public static void main(String[] args) {

 new MainFrame(new Offline(),400,400);

 }

}

FS_DEMO\Simple.demo

ECHOON

VIEWER 10

MODEL Earth.g Axis.g

SIM Rotate.sim

PLAYAUTOON

PLAYRUN

FS_MODEL\Earth.g

NAME Earth

MOVABLE

HINGE 0 1 0

TEXTURE Earth.jpg

GEOMSPHERE 1.0

FS_MODEL\Axis.g

NAME Axis

COLOR red

GEOMAXIS 1.5 X Y Z

FS_SIM\Rotate.sim

FNUM 0 RR Earth 3

FNUM 1 RR Earth 3

FNUM 2 RR Earth 3

FNUM 3 RR Earth 3

FNUM 4 RR Earth 3

FNUM 5 RR Earth 3

FNUM 6 RR Earth 3

FNUM 7 RR Earth 3

FNUM 8 RR Earth 3

FNUM 9 RR Earth 3

 The ECHOON command causes each command string sent to the parser to be echoed to standard output. These print statements can sometimes prove useful when debugging your command sequences. ECHOOFF turns off the command echoing.

ECHOON

Or

ECHOOFF

3.3 Part Transformations

As your FastScript3D applications become more complex, you will need a clear understanding of how FastScript3d organizes the various transformations. Each FastScript3D part stores twelve matrices that are utilized by the scaling, translating and orienting FastScript3D commands. The twelve matrices with commands to set them are summarized together here.

1. OffsetTreeAnim - Used to translate an entire sub-tree during animation. Commands are TA, TR. Part must be defined as MOVABLE or these commands are ignore.

2. ScaleTree - Used to scale an entire sub-tree. Used during model description or animation. Command is SCALETREE.

3. OrientTreeAnim - Used to orient an entire sub-tree during animation. Commands are Z, Q, DCM. Part must be defined as MOVABLE or these commands are ignored.

4. OrientTree - Used to orient an entire sub-tree during model description. Commands are ORIENTTREEZ, ORIENTTREEQ, ORIENTTREEDCM.

5. Offset - Used to specify location of a part during model description. Location is specified as an offset translation from the parent. Command is OFFSET.

6. ScalePre - Used to scale a part’s geometry during model description. Typically used when pre-scaling an imported geometry to be in proportion with your model scale. Command is SCALEPRE.

7. ScaleLocal - Used to scale local part. Used during model description or animation. Command is SCALELOCAL.

8. Hinge0 - Used to specify a hinge joint. Defined during model description and used during animation. Commands are RA (identical to RA0), RR (identical to RR0). Hinge must be defined with HINGE (identical to HINGE0) or commands are ignored.

9. Hinge1 - Used to specify a second hinge joint. Defined during model description and used during animation. Commands are RA1, RR1. Hinge must be defined with HINGE1 or commands are ignored.

10. Hinge2 - Used to specify a third hinge joint. Defined during model description and used during animation. Commands are RA2, RR2. Hinge must be defined with HINGE2 or commands are ignored.

11. OffsetGeom - Used to specify a local offset to this part’s geometry during model description. Command is OFFSETGEOM.

12. Orient - Used to specify the local orientation of this part during model description. Commands are (ORIENTZ, ORIENTQ, ORIENTDCM).

Extension Commands

3.4 Creating New Commands

FastScript3D is designed such that new commands can be easily added to the language. A command parser that is not part of the core set of FastScript3D commands is called an extension parser. If the FastScript3D engine gets a command that it does not recognize, it starts calling the extension parsers that it knows about. An extension parser can be added to the engine using the “addparser” method. A number of examples are presented in this Chapter to show how to create and implement extension parsers.

A number of FastScript3D Java functions are provided that facilitate creation of new commands and geometry. Java Documentation is provided with the FastScript3D download package.

Commands that are added to FastScript3D should return an appropriate result string. Users can check the return string for status just as they can with the core FastScript3D commands. When implementing your own custom FastScript3D commands, remember to return useful result strings to the caller.

The following example demonstrates how to define new material commands and add them to the FastScript3D language. The new material commands are:

MATPLASTIC

MATRUBBER

AddMaterial.html

<!-- Add Material Example -->

<title>FastScript3D - Model Template</title>

Model Making Practice Template

<FORM name="Model">

<!-- press button to call model creation function -->

<input type="button" value="Model"

 onclick="model();">

<!-- defines the FastScript3D applet -->

<applet align=middle

 name="fs3d" code="AddMaterial.class"

 archive="fs.jar"

 width="275" height="275">

<blockquote> <hr>

If you were using a Java-capable browser,

you would see the graphics window here.

</hr>< /blockquote>

</applet>

</FORM>

<!-- uses scripting language -->

<SCRIPT LANGUAGE="JavaScript">

 <!-- send commands on to FastScript3D -->

 function model() {

 fs3d.parse("MODELCLEAR");

 fs3d.parse("NAME blackplastic");

 fs3d.parse("MATPLASTIC");

 fs3d.parse("GEOMSPHERE 0.2");

 fs3d.parse("NAME redrubber");

 fs3d.parse("OFFSET 0.4 0.0 0");

 fs3d.parse("MATRUBBER");

 fs3d.parse("GEOMSPHERE 0.2");

 fs3d.parse("NAME purpleplastic");

 fs3d.parse("OFFSET 0.0 0.4 0");

 fs3d.parse("COLOR purple");

 fs3d.parse("MATPLASTIC");

 fs3d.parse("MATSEEPON");

 fs3d.parse("GEOMSPHERE 0.2");

 fs3d.parse("NAME purplerubber");

 fs3d.parse("OFFSET 0.4 0.4 0");

 fs3d.parse("COLOR purple");

 fs3d.parse("MATRUBBER");

 fs3d.parse("MATSEEPON");

 fs3d.parse("GEOMSPHERE 0.2");

 fs3d.parse("MODELBUILD");

 }

</SCRIPT>

AddMaterial.java
import java.applet.Applet;

import java.awt.*;

import java.awt.event.*;

import com.sun.j3d.utils.applet.MainFrame;

import com.sun.j3d.utils.universe.*;

import javax.media.j3d.*;

import java.util.*;

import javax.vecmath.*;

import fscore.fastscript.*;

import fscore.fastscript3d.*;

import fscore.fastscript3d.vvutil.*;

import fscore.fastscript3d.vvscene.*;

import fscore.fastscript3d.vvengine.*;

/**

 Create a Material

*/

public class AddMaterial extends FS3D {

 // extension parser

 class NewMaterials extends FScommand {

 public NewMaterials(VVscene s, VVupdate u)

 {

 super(s,u);

 }

 public String parse(String s)

 {

 if (s == null) return FailStatus;

 String command = new String();

 StringTokenizer strtoken = new StringTokenizer(s);

 int tokens = strtoken.countTokens();

 command = strtoken.nextToken();

 if (tokens < 1) return FailStatus;

 VVpart partptr = null;

 // Plastic (defaults black)

 if (command.equalsIgnoreCase("MATPLASTIC")) {

 partptr = scene.m.getcurrentpart(scene);

 if (partptr == null)

 return FailStatus + s + VVmessage.REFER;

 boolean status = partptr.styleptr.setmatvalues(

 command,

 0.0, 0.0, 0.0, // ambient

 0.01, 0.01, 0.01, // diffuse (color)

 0.5, 0.5, 0.5, // specular

 0.0, 0.0, 0.0, // emissive

 0.25, false); // shine, matseep

 if (partptr.geometryptr != null)

 partptr.geometryptr.setstyle(partptr.styleptr);

 if (status == false) return FailStatus + s + VVmessage.UNX;

 return SuccessStatus + s;

 // Rubber (defaults reddish)

 } else if (command.equalsIgnoreCase("MATRUBBER")) {

 partptr = scene.m.getcurrentpart(scene);

 if (partptr == null)

 return FailStatus + s + VVmessage.REFER;

 boolean status = partptr.styleptr.setmatvalues(

 command,

 0.05, 0.0, 0.0, // ambient

 0.7, 0.1, 0.1, // diffuse (color)

 0.2, 0.2, 0.2, // specular

 0.0, 0.0, 0.0, // emissive

 0.01, false); // shine, matseep

 if (partptr.geometryptr != null)

 partptr.geometryptr.setstyle(partptr.styleptr);

 if (status == false) return FailStatus + s + VVmessage.UNX;

 return SuccessStatus + s;

 }

 return FailStatus;

 }

 }

 public void init() {

 fs3dinit();

 // create new materials command parser

 NewMaterials addmaterials = new NewMaterials(scene,update);

 // add parser to the engine

 addparser(addmaterials);

 }

 public static void main(String[] args) {

 new MainFrame(new AddMaterial(),400,400);

 }

}

This next example creates two new FastScript3D commands called ROTATE and ORBIT. ROTATE is used to set a model of the Earth into motion, and ORBIT is used to set an object into orbit about Earth. The new commands have the syntax:

ROTATE <partname>

ORBIT <partname orbitradius>

Orbit.html

<!-- Add Orbit Example -->

<title>FastScript3D - Example</title>

Command Extension Example

<FORM name="Model">

<!-- press button to call model creation function -->

<input type="button" value="Demo"

 onclick="demo();">

<!-- defines the FastScript3D applet -->

<applet align=middle

 name="fs3d" code="Orbit.class"

 archive="fs.jar"

 width="275" height="275">

<blockquote> <hr>

If you were using a Java-capable browser,

you would see the graphics window here.

</hr>< /blockquote>

</applet>

</FORM>

<!-- uses scripting language -->

<SCRIPT LANGUAGE="JavaScript">

 <!-- model -->

 function model() {

 fs3d.parse("MODELCLEAR");

 fs3d.parse("NAME Earth");

 fs3d.parse("HINGE 0 1 0");

 fs3d.parse("MOVABLE");

 fs3d.parse("TEXTURE Earth.jpg");

 fs3d.parse("GEOMSPHERE 0.2");

 fs3d.parse("NAME Spacecraft");

 fs3d.parse("MATCOPPER");

 fs3d.parse("MOVABLE");

 fs3d.parse("ORIENTZ 0 1 0");

 fs3d.parse("GEOMCYL 0.05 0.05 0.1 30");

 fs3d.parse("MODELBUILD");

 }

 <!-- demo -->

 function demo() {

 model();

 var xloc = 0.6;

 fs3d.parse("TA Spacecraft " + xloc + " 0 0");

 fs3d.parse("ROTATE Earth");

 fs3d.parse("ORBIT Spacecraft " + xloc);

 }

</SCRIPT>

Orbit.java

import java.applet.Applet;

import java.awt.*;

import java.awt.event.*;

import com.sun.j3d.utils.applet.MainFrame;

import com.sun.j3d.utils.universe.*;

import javax.media.j3d.*;

import java.util.*;

import javax.vecmath.*;

import fscore.fastscript.*;

import fscore.fastscript3d.*;

import fscore.fastscript3d.vvutil.*;

import fscore.fastscript3d.vvscene.*;

import fscore.fastscript3d.vvengine.*;

/**

 Create a rotating earth and

 simple spacecraft that orbits it

 adds a command called ROTATE

 adds a command called ORBIT

*/

public class Orbit extends FS3D {

 // extension parser

 class NewCommands extends FScommand {

 public NewCommands(VVscene s, VVupdate u)

 {

 super(s,u);

 }

 public String parse(String s)

 {

 if (s == null) return FailStatus;

 String command = new String();

 StringTokenizer strtoken = new StringTokenizer(s);

 int tokens = strtoken.countTokens();

 command = strtoken.nextToken();

 if (tokens < 1) return FailStatus;

 VVpart partptr = null;

 if (command.equalsIgnoreCase("ROTATE")) {

 String partname = strtoken.nextToken();

 partptr = scene.m.findpart(partname);

 if (partptr == null)

 return FailStatus + s + VVmessage.REFER;

 update.script.parse("SIMNAME Rotate");

 int count = 0;

 for (int i=0; i<36; i=i+2) {

 update.script.parse("FNUM " + count + " RR "

 + partname + " " + 3);

 count++;

 }

 update.script.parse("SIMREFER Rotate");

 update.script.parse("PLAYAUTOON");

 update.script.parse("PLAYRUN");

 return SuccessStatus + s;

 } else if (command.equalsIgnoreCase("ORBIT")) {

 if (tokens < 3)

 return FailStatus + s + VVmessage.MISS;

 String partname = strtoken.nextToken();

 double radius = VVscan.getdouble(strtoken.nextToken());

 partptr = scene.m.findpart(partname);

 if (partptr == null)

 return FailStatus + s + VVmessage.REFER;

 update.script.parse("SIMNAME Orbit");

 int count = 0;

 for (int i=0; i<360; i=i+3) {

 double radians = VVmath.a2r((double)i);

 double x = radius * Math.cos(radians);

 double y = radius * Math.sin(radians);

 double z = 0.0;

 update.script.parse("FNUM " + count + " TA "

 + partname + " " + x + " " + y + " " + z);

 count++;

 }

 update.script.parse("SIMREFER Orbit");

 update.script.parse("PLAYAUTOON");

 update.script.parse("PLAYRUN");

 return SuccessStatus + s;

 }

 return FailStatus;

 }

 }

 public void init() {

 fs3dinit();

 // create new rotate and orbit command parser

 NewCommands addcommands = new NewCommands(scene,update);

 // add parser to the engine

 addparser(addcommands);

 }

 public static void main(String[] args) {

 new MainFrame(new Orbit(),400,400);

 }

}

3.5 Picking Objects with the Mouse

Parts that are pick-able with the mouse are specified using the PICKON command. If a pick-able part is clicked with the mouse, a PICKED command is automatically generated and sent to the parser. The following example shows a model with three pick-able parts. In the example, whenever an item is picked, the picked command string is sent back to the JavaScript function “parseget” and displayed as a text message in the web page. The example demonstrates communication from Java to JavaScript. Text strings sent to JavaScript can be easily parsed utilized the JavaScript “split” function.

Pick.html

<!-- Pick Example -->

<title>FastScript3D - Example</title>

Command Extension Example

<FORM name="pick">

<!-- press button to start demo -->

<input type="button" value="Start Demo"

 onclick="demo();">

Picked:

<input name="picked"

 size="50"

 type = "text">

</textarea>

<!-- defines the FastScript3D applet -->

<applet align=middle

 name="fs3d" code="Pick.class"

 archive="fs.jar"

 width="275" height="275">

<blockquote> <hr>

If you were using a Java-capable browser,

you would see the graphics window here.

</hr>< /blockquote>

</applet>

<!-- uses scripting language -->

<SCRIPT LANGUAGE="JavaScript">

 <!-- model -->

 function model() {

 // create a model with three pickable objects

 fs3d.parse("MODELCLEAR");

 fs3d.parse("NAME red");

 fs3d.parse("COLOR red");

 fs3d.parse("PICKON");

 fs3d.parse("GEOMSPHERE 0.2");

 fs3d.parse("NAME green");

 fs3d.parse("OFFSET 0.5 0 0");

 fs3d.parse("COLOR green");

 fs3d.parse("PICKON");

 fs3d.parse("GEOMRECT 0.4 0.3 0.2");

 fs3d.parse("NAME blue");

 fs3d.parse("OFFSET 0 0.5 0");

 fs3d.parse("COLOR blue");

 fs3d.parse("PICKON");

 fs3d.parse("GEOMCYL 0.2 0.2 0.3 15");

 fs3d.parse("MODELBUILD");

 }

 <!-- demo -->

 function demo() {

 model();

 }

 <!-- part was picked -->

 function parseget(s) {

 this.document.pick.picked.value = s;

 }

</SCRIPT>

Pick.java

import java.applet.Applet;

import java.awt.*;

import java.awt.event.*;

import com.sun.j3d.utils.applet.MainFrame;

import com.sun.j3d.utils.universe.*;

import javax.media.j3d.*;

import java.util.*;

import javax.vecmath.*;

import netscape.javascript.*;

import fscore.fastscript.*;

import fscore.fastscript3d.*;

import fscore.fastscript3d.vvutil.*;

import fscore.fastscript3d.vvscene.*;

import fscore.fastscript3d.vvengine.*;

/**

 Demonstrates Pick Handling

*/

public class Pick extends FS3D {

 JSObject mainWindow = null;

 // extension parser

 class PickParser extends FScommand {

 public PickParser(VVscene s, VVupdate u)

 {

 super(s,u);

 }

 public String parse(String s)

 {

 if (s == null) return FailStatus;

 String command = new String();

 StringTokenizer strtoken = new StringTokenizer(s);

 int tokens = strtoken.countTokens();

 command = strtoken.nextToken();

 if (tokens < 1) return FailStatus;

 VVpart partptr = null;

 if (command.equalsIgnoreCase("PICKED")) {

 if (tokens < 7)

 return FailStatus + s + VVmessage.MISS;

 String partname = strtoken.nextToken();

 partptr = scene.m.findpart(partname);

 if (partptr == null)

 return FailStatus + s + VVmessage.REFER;

 // send Picked cmd to html/javascript method parseget

 String [] stringArgs = new String[1];

 stringArgs[0] = s;

 mainWindow.call("parseget", stringArgs);

 }

 return FailStatus;

 }

 }

 public void init() {

 fs3dinit();

 mainWindow = JSObject.getWindow(this);

 // parser handler for picked objects

 PickParser pickparser = new PickParser(scene,update);

 // add parser to the engine

 addparser(pickparser);

 }

 public static void main(String[] args) {

 new MainFrame(new Pick(),400,400);

 }

}

3.6 Creating Custom Geometry

The FastScript3D Java class “FSgeometry” provides the basic template for geometry creation. The “initbranch” method creates a Java3D Branch Group for the geometry. The Branch Group is the root of the sub-tree that will contain your geometry data for a given part. The branch group can contain sub-branch groups, transform groups and shapes as needed.

The geometry data for the added branch group is comprised of the one or more constituent Shape3D objects. A Shape3D object is the Java3D data structure for storing geometry data. To create a new geometry, your new branch group will be creating one or more shapes and adding it in to the sub-tree. The “setbits” FastScript3D utility method sets default Shape3D flags. The Shape3D objects that comprise the new geometry are added to the FastScript3D “shapes” vector.

Once a new geometry is created, it is added to a specific part with the “geometry” method. The pointer to the part, the geometry command string, and the FSgeometry object created are passed as arguments. This example demonstrates how to create a FastScript3D command to create a 3D cone. Java3D has a Cone Primitive as part of its basic geometry set. Thus our command string can be created and take advantage of the standard code for creating a Java3D Cone Primitive. The FastScript3D syntax for the command is:

GEOMCONE <radius height>

GeomCone.html

<!-- Add Cone Example -->

<title>FastScript3D - Example</title>

Command Extension Example

<FORM name="Model">

<!-- press button to call model creation function -->

<input type="button" value="Demo"

 onclick="demo();">

<!-- defines the FastScript3D applet -->

<applet align=middle

 name="fs3d" code="GeomCone.class"

 archive="fs.jar"

 width="275" height="275">

<blockquote> <hr>

If you were using a Java-capable browser,

you would see the graphics window here.

</hr>< /blockquote>

</applet>

</FORM>

<!-- uses scripting language -->

<SCRIPT LANGUAGE="JavaScript">

 <!-- model -->

 function model() {

 // create a model with three pickable cones

 fs3d.parse("MODELCLEAR");

 fs3d.parse("NAME red");

 fs3d.parse("COLOR red");

 fs3d.parse("PICKON");

 fs3d.parse("GEOMCONE 0.2 0.4");

 fs3d.parse("NAME bronze");

 fs3d.parse("OFFSET 0.5 0 0");

 fs3d.parse("MATSEEPOFF");

 fs3d.parse("MATBRONZE");

 fs3d.parse("PICKON");

 fs3d.parse("GEOMCONE 0.2 0.4");

 fs3d.parse("NAME stone");

 fs3d.parse("OFFSET 0 0.5 0");

 fs3d.parse("MATSEEPOFF");

 fs3d.parse("TEXTURE stone.jpg");

 fs3d.parse("PICKON");

 fs3d.parse("GEOMCONE 0.2 0.4");

 fs3d.parse("MODELBUILD");

 }

 <!-- demo -->

 function demo() {

 fs3d.parse(“BGCOLOR white”);

 model();

 }

</SCRIPT>

GeomCone.java

import java.applet.Applet;

import java.awt.*;

import java.awt.event.*;

import com.sun.j3d.utils.applet.MainFrame;

import com.sun.j3d.utils.universe.*;

import com.sun.j3d.utils.geometry.*;

import javax.media.j3d.*;

import java.util.*;

import javax.vecmath.*;

import fscore.fastscript.*;

import fscore.fastscript3d.*;

import fscore.fastscript3d.vvutil.*;

import fscore.fastscript3d.vvscene.*;

import fscore.fastscript3d.vvengine.*;

/**

 Demonstrates Custom Geometry

*/

public class GeomCone extends FS3D {

 // extension geometry

 class ConeGeometry extends FSgeometry {

 // constructor

 public ConeGeometry(VVpart partptr, double radius, double height) {

 initbranch();

 create(partptr, radius, height);

 }

 // creates primitive

 public void create(VVpart partptr,

 double radius, double height) {

 Cone cone = new Cone(

 (float)radius, (float)height,

 Cone.GENERATE_TEXTURE_COORDS |

 Cone.GENERATE_NORMALS,

 partptr.styleptr.appearance);

 primitive = (Primitive) cone;

 // add constituent shapes to list

 Shape3D s = null;

 s = cone.getShape(cone.BODY);

 setbits(s);

 shapes.addElement(s);

 s = cone.getShape(cone.CAP);

 setbits(s);

 shapes.addElement(s);

 // add the geometry in

 branchgroup.addChild(primitive);

 }

 }

 // extension parser

 class ConeParser extends FScommand {

 // constructor

 public ConeParser(VVscene s, VVupdate u)

 {

 super(s,u);

 }

 // command parser

 public String parse(String s)

 {

 if (s == null) return FailStatus;

 String command = new String();

 StringTokenizer strtoken = new StringTokenizer(s);

 int tokens = strtoken.countTokens();

 command = strtoken.nextToken();

 if (tokens < 1) return FailStatus;

 VVpart partptr = null;

 if (command.equalsIgnoreCase("GEOMCONE")) {

 if (tokens < 3)

 return FailStatus + s + VVmessage.MISS;

 partptr = scene.m.getcurrentpart(scene);

 if (partptr == null)

 return FailStatus + s + VVmessage.REFER;

 double radius = VVscan.getdouble(strtoken.nextToken());

 double height = VVscan.getdouble(strtoken.nextToken());

 // create the cone primitive

 ConeGeometry cone = new ConeGeometry(partptr,

 radius, height);

 update.shape.geometry(partptr, s, cone);

 return SuccessStatus + s;

 }

 return FailStatus;

 }

 }

 public void init() {

 fs3dinit();

 // parser handler for new cone geometry

 ConeParser coneparser = new ConeParser(scene,update);

 // add parser to the engine

 addparser(coneparser);

 }

 public static void main(String[] args) {

 new MainFrame(new GeomCone(),400,400);

 }

}

This next geometry example creates a mesh of planar polygons. Three new geometry commands are defined. GEOMPMESH creates the mesh with nxm vertices. The mesh lies in the x-y plane. The distance between each n division vertex is pmeshnsize and the distance between each m division vertex is pmeshmsize. The command GEOMPMESHXZ sets the x and z values for mesh vertex (i,j). The command GEOMPMESHU updates the mesh after vertices have been modified. The syntax for the new commands is:

GEOMPMESH <nsize msize pmeshnsize pmeshmsize>

GEOMPMESHXZ <i j x z>

GEOMPMESHU

The example shown uses the new geometry to create a texture mapped mesh simulation that continuously animates the mesh in a sin wave motion. The demo, model and simulation functions are stored in the FS_DEMO, FS_MODEL and FS_SIM directories and sourced in by the web page.

GeomPmesh.html

<!-- Add Pmesh Example -->

<title>FastScript3D - Example</title>

Planar Mesh Example

<!-- load scripts -->

<script language="JavaScript" src=".\FS_MODEL\PmeshModel.js"></script>

<script language="JavaScript" src=".\FS_SIM\PmeshSim.js"></script>

<script language="JavaScript" src=".\FS_DEMO\PmeshDemo.js"></script>

<FORM name="geompmesh">

<!-- press button to setup -->

<input type="button" value="Sun Wave"

 onclick="demo();">

<!-- press button to stop or start -->

<input type="button" value="Stop"

 onclick="play(false);">

<input type="button" value="Start"

 onclick="play(true);">

<P>

<!-- defines the FastScript3D applet -->

<applet align=middle

 name="fs3d" code="GeomPmesh.class"

 archive="fs.jar"

 width="275" height="275">

<blockquote> <hr>

If you were using a Java-capable browser,

you would see the graphics window here.

</hr>< /blockquote>

</applet>

</FORM>

FS_DEMO/PmeshDemo.js

function demo() {

 var pmeshn = 2;

 var pmeshm = 50;

 var pmeshnsize = 5.0;

 var pmeshmsize = 0.1;

 fs3d.parse("VIEWER 10");

 fs3d.parse("MODELCLEAR");

 fs3d.parse("BGCOLOR red");

 model(pmeshn,pmeshm,pmeshnsize,pmeshmsize);

 sim(pmeshn,pmeshm,pmeshnsize,pmeshmsize);

 fs3d.parse("REFERSIM sinx");

 fs3d.parse("PLAYAUTOON");

 fs3d.parse("PLAYRUN");

}

function play(status) {

 if (status == false) {

 fs3d.parse("PLAYSTOP");

 } else if (status == true) {

 fs3d.parse("PLAYRUN");

 }

}

FS_MODEL/PmeshModel.js

function model(pmeshn,pmeshm,pmeshnsize,pmeshmsize) {

 fs3d.parse("NAME pmesh");

 fs3d.parse("OFFSET 0 -2.5 0");

 fs3d.parse("TEXTURE Java3d.jpg");

 fs3d.parse("GEOMPMESH " +

 pmeshn + " " + pmeshm + " " +

 pmeshnsize + " " + pmeshmsize);

 fs3d.parse("MODELBUILD");

}

FS_SIM/PmeshSim.js

function sim(pmeshn,pmeshm,pmeshnsize,pmeshmsize)

{

 var scale, scaleinc;

 var fnum, stepsize, stepinc;

 var i, j, z;

 fs3d.parse("SIMNAME sinx 50");

 scale = 1.0; scaleinc = -0.04;

 for (fnum=0; fnum<25; fnum++) {

 stepsize = 6.0 / (pmeshm+1.0);

 for (i=0; i<pmeshn; i++) {

 stepinc = -3.0;

 for (j=0; j<pmeshm; j++) {

 z = scale * Math.sin(stepinc);

 if (fnum == 12) z = 0.0;

 fs3d.parse("FNUM " + fnum + " GEOMPMESHXZ pmesh " +

 i + " " + j + " " +

 stepinc + " " + z);

 stepinc += stepsize;

 }

 scale+=scaleinc;

 }

 fs3d.parse("FNUM " + fnum + " GEOMPMESHU pmesh");

 }

 scale = -1.0; scaleinc = 0.04;

 for (fnum=25; fnum<50; fnum++) {

 stepsize = 6.0 / (pmeshm+1.0);

 for (i=0; i<pmeshn; i++) {

 stepinc = -3.0;

 for (j=0; j<pmeshm; j++) {

 z = scale * Math.sin(stepinc);

 if (fnum == 37) z = 0.0;

 fs3d.parse("FNUM " + fnum + " GEOMPMESHXZ pmesh " +

 i + " " + j + " " +

 stepinc + " " + z);

 stepinc += stepsize;

 }

 scale+=scaleinc;

 }

 fs3d.parse("FNUM " + fnum + " GEOMPMESHU pmesh");

 }

}

GeomPmesh.java

import java.applet.Applet;

import java.awt.*;

import java.awt.event.*;

import com.sun.j3d.utils.applet.MainFrame;

import com.sun.j3d.utils.universe.*;

import com.sun.j3d.utils.geometry.*;

import javax.media.j3d.*;

import java.util.*;

import javax.vecmath.*;

import fscore.fastscript.*;

import fscore.fastscript3d.*;

import fscore.fastscript3d.vvutil.*;

import fscore.fastscript3d.vvscene.*;

import fscore.fastscript3d.vvengine.*;

/**

 Planar Polygon Mesh Geometry

*/

public class GeomPmesh extends FS3D {

 // creates pmesh shape

 class PmeshShape extends Shape3D {

 int pmeshN = 0;

 int pmeshM = 0;

 public GeometryInfo iqi = null;

 public IndexedQuadArray iqa = null;

 int index[][] = null;

 Point3d pts[] = null;

 TexCoord2f txt[] = null;

 int[] indices = null;

 NormalGenerator ng;

 // update the mesh with new coordinates

 public boolean update(VVpart partptr)

 {

 if (partptr == null) return false;

 if (iqi == null) return false;

 if (ng == null) return false;

 iqa.setCoordinates(0,pts);

 setGeometry(iqa);

 return true;

 }

 // set the x and z components of a given mesh vertex

 public boolean setxz(VVpart partptr,

 int n, int m, double x, double z)

 {

 if (partptr == null) return false;

 if (iqi == null) return false;

 if (ng == null) return false;

 if (n >= pmeshN) return false;

 if (m >= pmeshM) return false;

 if (n < 0) return false;

 if (m < 0) return false;

 int vertexnum = index[n][m];

 pts[vertexnum].x = x;

 pts[vertexnum].z = z;

 return true;

 }

 // create mesh as an indexed quad array

 public PmeshShape(VVpart partptr,

 int n, int m, double nsize, double msize) {

 super();

 if (partptr == null) return;

 pmeshN = n;

 pmeshM = m;

 // the total number of vertices is nxm

 pts = new Point3d[n * m];

 txt = new TexCoord2f[n * m];

 // the total number of face vertices

 indices = new int[4 * (n-1) * (m-1)];

 // create table

 int tmp = 0;

 index = new int[n][m];

 for (int i=0; i<n; i++) {

 for (int j=0; j<m; j++) {

 index[i][j]=tmp;

 tmp ++;

 }

 }

 // create the vertices for the pmesh grid

 // for each row i

 int count = 0;

 double accumn = 0.0;

 for (int i=0; i<n; i++) {

 // for each column j

 double accumm = 0.0;

 for (int j=0; j<m; j++) {

 pts[count] = new Point3d(

 accumm,

 accumn,

 0.0);

 txt[count] = new TexCoord2f(

 ((float)j/(float)(pmeshM-1)),

 ((float)i/(float)(pmeshN-1)));

 count ++;

 // move to next column

 accumm += msize;

 }

 // move to next row

 accumn += nsize;

 }

 // create the faces for the pmesh grid

 int inc = 0;

 int vertex = 0;

 for (int i=0; i<n-1; i++) {

 vertex = i * m;

 for (int j=0; j<m-1; j++) {

 int a = vertex;

 int b = vertex + 1;

 int c = vertex + m + 1;

 int d = vertex + m;

 indices[inc] = a; inc++;

 indices[inc] = b; inc++;

 indices[inc] = c; inc++;

 indices[inc] = d; inc++;

 vertex++;

 }

 }

 // create geometry info and generate normals

 iqi = new GeometryInfo(GeometryInfo.QUAD_ARRAY);

 iqi.setCoordinates(pts);

 iqi.setCoordinateIndices(indices);

 ng = new NormalGenerator();

 ng.setCreaseAngle((float)Math.toRadians(45));

 ng.generateNormals(iqi);

 // create indexed quad array with normals

 iqa = new IndexedQuadArray(

 n * m,

 GeometryArray.COORDINATES |

 GeometryArray.NORMALS |

 GeometryArray.TEXTURE_COORDINATE_2,

 4 * (n-1) * (m-1));

 iqa.setCoordinates(0,pts);

 iqa.setNormals(0,iqi.getNormals());

 iqa.setCoordinateIndices(0,indices);

 iqa.setTextureCoordinates(0,0,txt);

 iqa.setTextureCoordinateIndices(0,0,indices);

 if (partptr.styleptr != null)

 this.setAppearance(partptr.styleptr.appearance);

 setGeometry(iqa);

 }

 }

 // defines extension geometry

 class PmeshGeometry extends FSgeometry {

 VVmath vvmath = new VVmath();

 // constructor

 public PmeshGeometry(VVpart partptr,

 int n, int m, double nsize, double msize) {

 initbranch();

 create(partptr, n, m, nsize, msize);

 }

 // creates primitive

 public void create(VVpart partptr,

 int n, int m, double nsize, double msize) {

 PmeshShape pmesh = new PmeshShape(partptr,

 n, m, nsize, msize);

 shape = pmesh;

 // set bit flags to standard

 setbits(shape);

 setbits(pmesh.iqa);

 // add the geometry to list

 shapes.addElement(shape);

 // add the geometry to branchgroup

 branchgroup.addChild(shape);

 }

 }

 // mesh extension parser

 class PmeshParser extends FScommand {

 // constructor

 public PmeshParser(VVscene s, VVupdate u)

 {

 super(s,u);

 }

 // command parser

 public String parse(String s)

 {

 if (s == null) return FailStatus;

 String command = new String();

 StringTokenizer strtoken = new StringTokenizer(s);

 int tokens = strtoken.countTokens();

 command = strtoken.nextToken();

 if (tokens < 1) return FailStatus;

 VVpart partptr = null;

 if (command.equalsIgnoreCase("GEOMPMESH")) {

 if (tokens < 5)

 return FailStatus + s + VVmessage.MISS;

 partptr = scene.m.getcurrentpart(scene);

 if (partptr == null)

 return FailStatus + s + VVmessage.REFER;

 int n = VVscan.getint(strtoken.nextToken());

 int m = VVscan.getint(strtoken.nextToken());

 double nsize = VVscan.getdouble(strtoken.nextToken());

 double msize = VVscan.getdouble(strtoken.nextToken());

 // create the mesh primitive

 PmeshGeometry pmesh = new PmeshGeometry(partptr,

 n, m, nsize, msize);

 update.shape.geometry(partptr, s, pmesh);

 return SuccessStatus + s;

 } else if (command.equalsIgnoreCase("GEOMPMESHXZ")) {

 if (tokens < 5)

 return FailStatus + s + VVmessage.MISS;

 String partname = strtoken.nextToken();

 partptr = scene.m.findpart(partname);

 if (partptr == null)

 return FailStatus + s + VVmessage.REFER;

 FSgeometry geom = partptr.getgeom();

 if (geom == null)

 return FailStatus + s + VVmessage.UNX;

 int n = VVscan.getint(strtoken.nextToken());

 int m = VVscan.getint(strtoken.nextToken());

 double x = VVscan.getdouble(strtoken.nextToken());

 double z = VVscan.getdouble(strtoken.nextToken());

 PmeshShape pmesh = (PmeshShape) geom.shape;

 boolean status = pmesh.setxz(partptr, n,m,x,z);

 if (status == false)

 return FailStatus + s + VVmessage.UNX;

 return SuccessStatus + s;

 } else if (command.equalsIgnoreCase("GEOMPMESHU")) {

 if (tokens < 2)

 return FailStatus + s + VVmessage.MISS;

 String partname = strtoken.nextToken();

 partptr = scene.m.findpart(partname);

 if (partptr == null)

 return FailStatus + s + VVmessage.REFER;

 FSgeometry geom = partptr.getgeom();

 if (geom == null)

 return FailStatus + s + VVmessage.UNX;

 PmeshShape pmesh = (PmeshShape) geom.shape;

 boolean status = pmesh.update(partptr);

 if (status == false)

 return FailStatus + s + VVmessage.UNX;

 return SuccessStatus + s;

 }

 return FailStatus;

 }

 }

 public void init() {

 fs3dinit();

 // parser handler for new pmesh geometry

 PmeshParser pmeshparser = new PmeshParser(scene,update);

 // add parser to the engine

 addparser(pmeshparser);

 }

 public static void main(String[] args) {

 new MainFrame(new GeomPmesh(),400,400);

 }

}

3.7 Geometry Loaders

Java3D provides a standard API for geometry loaders. This next example shows the implementation of the GEOMOBJ command, a command that uses the Java3D wave front file loader. Commands to load other file formats, such as X3D, can be added using the same template.

Parser Segment

 } else if (command.equalsIgnoreCase("GEOMOBJ")) {

 if (tokens < 2) {

 return FailStatus + s + VVmessage.MISS;

 }

 VVpart p = scene.m.getcurrentpart(scene);

 if (p == null) {

 return FailStatus + s + VVmessage.UNX;

 }

 String objfile = new String(s.substring(8));

 VVobj obj = new VVobj(scene,objfile);

 if (obj.geturl() == null) {

 return FailStatus + s + VVmessage.FILE;

 }

 update.shape.geometry(p, s, obj);

 return SuccessStatus + s;

VVobj.java

import fscore.fastscript3d.vvscene.*;

import fscore.fastscript3d.vvengine.*;

import fscore.fastscript3d.vvutil.* ;

import java.applet.Applet;

import java.net.URL;

import java.net.MalformedURLException;

import java.util.Hashtable;

import java.util.Vector;

import java.util.Enumeration;

import javax.media.j3d.*;

import java.util.*;

import java.io.*;

import java.lang.reflect.Constructor;

import java.lang.reflect.InvocationTargetException;

import com.sun.j3d.loaders.objectfile.ObjectFile;

import com.sun.j3d.loaders.objectfile.ObjectFile.*;

import com.sun.j3d.loaders.ParsingErrorException.*;

import com.sun.j3d.loaders.IncorrectFormatException.*;

import com.sun.j3d.loaders.Scene;

import com.sun.j3d.utils.universe.*;

import com.sun.j3d.utils.geometry.Sphere;

import com.sun.j3d.utils.image.TextureLoader;

import javax.media.j3d.*;

import javax.vecmath.*;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import com.sun.j3d.utils.applet.MainFrame;

import com.sun.j3d.utils.universe.SimpleUniverse;

import java.applet.Applet;

import java.applet.Applet;

import java.awt.*;

import java.awt.event.*;

import com.sun.j3d.utils.applet.MainFrame;

import com.sun.j3d.utils.universe.*;

import javax.media.j3d.*;

import javax.vecmath.*;

import java.io.*;

import com.sun.j3d.utils.behaviors.vp.*;

public class VVobj extends FSgeometry {

 ObjectFile loader;

 VVfile vvfile = null;

 URL url = null;

 boolean noTriangulate = false;

 boolean noStripify = false;

 double creaseAngle = 60.0;

 /**

 * returns file url; if null is returned by this

 * method it can be deduced that there was an error

 * opening the file specified

 */

 public URL geturl()

 {

 return url;

 }

 // constructor

 public VVobj()

 {

 // not used

 }

 public VVobj(VVscene scn, String objfile)

 {

 vvfile = new VVfile(scn);

 initbranch();

 setscene(scn);

 create(scn,objfile);

 }

 public void create(VVscene scene, String objfile)

 {

 // check for a decent scene

 if (scene==null) {

 System.out.println("VVERROR: OBJ, null engine exception");

 return;

 }

 if (objfile == null) {

 System.out.println("VVERROR: OBJ, null file name");

 return;

 }

 url = vvfile.geturl(scene.path,

 scene.modelpath,

 objfile);

 if (url == null) {

 System.out.println("VVERROR: OBJ, bad file name");

 return;

 }

 // need to create a branch group for this geometry

 // and then add the geometry in

 TransformGroup transform= new TransformGroup();

 transform.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 transform.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

 Transform3D identity = new Transform3D();

 transform.setTransform(identity);

 Scene objscene = loadobj(transform, objfile);

 if (objscene == null) return;

 branchgroup.addChild(transform);

 // add constituent shapes to list

 Hashtable namedObjects = objscene.getNamedObjects();

 Enumeration e = namedObjects.keys();

 while (e.hasMoreElements()) {

 String name = (String) e.nextElement();

 //System.out.println("name = " + name);

 Shape3D s = (Shape3D) namedObjects.get(name);

 //System.out.println("adding shape = " + name);

 shapes.add(s);

 }

 } // create()

 public Scene loadobj(TransformGroup transform, String filename)

 {

 int flags = ObjectFile.RESIZE;

 if (!noTriangulate) flags |= ObjectFile.TRIANGULATE;

 if (!noStripify) flags |= ObjectFile.STRIPIFY;

 loader = new ObjectFile(flags,

 (float) (creaseAngle * Math.PI / 180.0));

 Scene objscene = null;

 try {

 objscene = loader.load(url);

 } catch (Exception e) {

 //System.out.println("VVERROR: loading scene :"

 // + filename);

 // must set url to null here for geturl() method

 // to return proper result

 url = null;

 return null;

 }

 if (objscene != null) {

 // get the scene group

 BranchGroup sceneGroup = objscene.getSceneGroup();

 sceneGroup.setCapability(BranchGroup.ALLOW_DETACH);

 branchgroup.setCapability(Group.ALLOW_CHILDREN_EXTEND);

 branchgroup.setCapability(Group.ALLOW_CHILDREN_READ);

 branchgroup.setCapability(Group.ALLOW_CHILDREN_WRITE);

 sceneGroup.setCapability(BranchGroup.ALLOW_BOUNDS_READ);

 // add the scene group to the scene

 transform.addChild(sceneGroup);

 // now that the scene group is "live" we can inquire the bounds

 BoundingSphere sceneBounds =

 (BoundingSphere)sceneGroup.getBounds();

 }

 return objscene;

 }

} // class VVobj

Command Guide

This Chapter lists all of the commands in alphabetical order. The commands are labeled model (for model creation commands), animate (for real-time animation commands), sequence (for animation sequencing commands) and system (for general commands). The command categories loosely group the commands into categories in which they are typically used, not into categories in which they must be used. Commands may be mixed as desired. For example, a parts color (a model command) can be changed during animation.

Command arguments are shown between angle brackets. The syntax, synopsis, parameters and example are provided to help explain the commands. Optional arguments or syntax are indicated in brackets.

Some commands have an associated GET command for querying current command values. The syntax returned by a given query command is shown in curly braces. Result strings always begin with the keyword “1” if successful. If unsuccessful, a result string will begin with the keyword “0” followed by the command string and an error explanation string. Always parse the result of a GET command to check if the first string is “0” or “1” to ensure valid results follow.

1. # XE "#"
System

Syntax

<comment>

Synopsis

The hash character prefaces comments. Comment commands have no effect.

Parameters

The text of the comment.

Example

This is a comment

2. ADD XE "A:ADD"
Animate

Syntax

ADD <partname>

Synopsis

Adds a new part into the existing scene. First create new part record with the NAME command and set PARENT and other attributes. Then use ADD to build the part into the scene.

Parameters

Name of part.

Example

ADD newpart

3. BGCOLOR XE "B:BGCOLOR"
System

Syntax

BGCOLOR <name>

BGCOLOR <r g b>

Query

BGCOLORGET XE "B:BGCOLORGET"

{1 BGCOLORGET r g b [name]}

Synopsis

Set canvas background color.

Parameters

Color is specified by name or by constituent red, green and blue components. RGB values should range from 0 to 1.

4. BGTEXTUREOFF XE "B:BGCOLOR"
System

Syntax

BGTEXTUREOFF
Synopsis

Clear the canvas background texture.

Parameters

None.

5. BGTEXTUREON XE "B:BGCOLOR"
System

Syntax

BGTEXTUREON <name>

Query

BGTEXTUREGET

{1 BGTEXTUREGET name}

Synopsis

Set canvas background texture.

Parameters

Texture is specified as a jpg or gif file. The texture image should be large enough to cover the canvas area. The texture file should be placed in the FS_TEXTURE directory.

6. COLOR XE "C:COLOR"
Model

Syntax

COLOR <name>

COLOR <r g b>

Query

COLORGET XE "C:COLORGET"

{1 COLORGET r g b [name]}

Synopsis

Set color for this part. Complex geometry primitives such as those loaded using file loaders may have colors predefined already. Consequently, the part’s color setting may be ignored for some geometry primitives.

Parameters

Color is specified by name or by constituent red, green and blue components. RGB values should range from 0 to 1.

Example

COLOR green

or

COLOR 0 1 0

7. DCM XE "D:DCM"
Animate

Syntax

DCM <x0 x1 x2 y0 y1 y2 z0 z1 z2>

Query

DCMGET XE "D:DCMGET"
{1 DCMGET x0 x1 x2 y0 y1 y2 z0 z1 z2}

Synopsis

Specifies the desired orientation of the part during animation by providing a DCM direction cosine matrix defining the x, y and z axis.

Parameters

The desired direction cosine matrix describes how to orient the part.

Example

DCM -1 0 0 0 -1 0 0 0 –1

8. DEBUGOFF XE "D:DELETE"
Animate

Syntax

DEBUGOFF
Synopsis

This is the default. Debugging print statements are not shown.

Parameters

None.

Example

DEBUGOFF

9. DEBUGON XE "D:DELETE"
Animate

Syntax

DEBUGON
Synopsis

Used to see debugging print statements. Primarily for those who are adding to or modifying the FastScript3D source code with custom commands.

Parameters

None.

Example

DEBUGON

10. DELETE XE "D:DELETE"
Animate

Syntax

DELETE <partname>

Synopsis

Deletes the specified part from the existing scene. Frees up associated memory. If part has children, use DELETEALL instead.

Parameters

Name of part to delete.

Example

DELETE panel

11. DELETEALL XE "D:DELETEALL"
Animate

Syntax

DELETEALL <partname>

Synopsis

Deletes the specified part and all of its children from the existing scene. Frees up associated memory.

Parameters

Specifies the name of part (and it’s children) to delete.

Example

DELETEALL bus

12. DEMO XE "D:DEMO"
System

Syntax

DEMO <filename.demo>

Synopsis

Use to load in and execute a simple demo file of FastScript3D commands. Specified demo file should end in “.demo”, should not have scripted commands, and should be located in a local directory called FS_DEMO.

Parameters

Name of demo file to load

Example

DEMO mgsdeploy.demo

13. ECHOOFF XE "E:ECHOOFF"
System

Syntax

ECHOOFF
Synopsis

Stop echoing all incoming FastScript3D to standard output.

Parameters

None.

Example

ECHOOFF

14. ECHOON XE "E:ECHOON"
System

Syntax

ECHOON
Synopsis

Used for debugging. All FastScript3D commands are echoed to standard output when encountered by the FastScript3D parser.

Parameters

None.

Example

ECHOON

15. FNEXT XE "F:FNEXT"

Sequence

Syntax

FNEXT <commands>

Synopsis

Adds specified command(s) into current frame and moves to next frame.

Parameters

The command(s) to add.

Example

FNEXT TA basebody 0 0 0 / OFF plume

16. FNUM XE "F:FNUM"
Sequence

Syntax

FNUM <framenum> <commands>

Query

FNUMGET XE "F:FNUMGET" <framenum>

 {1 FNUMGET framenum commands}
Synopsis

FNUM adds the specified command(s) into the indicated frame of the currently referenced simulation. FNUMGET returns a string of the commands currently in the specified frame number.

Parameters

The command to add.

Example

FNUM 10 TA basebody 0 0 0 / OFF plume

17. FONT XE "F:FONT"
Model

Syntax

FONT <fontname [style size]]>

Query

FONTGET XE "F:FONTGET"

{1 FONTGET fontname style size}
Synopsis

Use the specified font for text utilized in part's geometry. Applies to the currently referenced part. May be ignored for imported geometry, where fonts are already specified. Font should be specified prior to the geometry creating (GEOM) command for the part. A font specified after the geometry is created has no effect on the geometry. FONTGET returns the currently set font for the part. If no font has been specified for the part, the default font is returned.

Parameters

Desired legal font name. Font point style and font point size arguments are optional. Font style should be 0 for plain, 1 for bold, or 2 for italic.

Example

FONT helvetica

18. FONTALL XE "F:FONTALL"
System

Syntax

FONTALL <fontname [style size]>

Query

FONTALLGET XE "F:FONTALLGET"
{1 fontname [style size]}

Synopsis

Sets the default font. This font is used in the event that a part has text geometry and no FONT command has been specified for the part. May be ignored for imported geometry, where fonts are already specified. FONTALL should be invoked prior to creating or loading models, as it has no effect on already created geometry. FONTALLGET returns the default font.

Parameters

Desired legal font name. Font point style and font point size arguments are optional. Font style should be 0 for plain, 1 for bold, or 2 for italic.

Example

FONTALL helvetica

19. GEOMAXIS XE "G:GEOMAXIS"
Model

Syntax

GEOMAXIS <length xlabel ylabel zlabel>

Synopsis

Create a 3D axis of specified length. Labels the axes as specified. Applies to currently referenced part.

Parameters

Desired axis name and labels.

Example

GEOMAXIS 3 SC-x SC-y SC-z

20. GEOMBOX XE "G:GEOMBOX"
Model

Syntax

GEOMBOX <size>

Synopsis

Create a 3D box with length, width and height all equal to twice the given size. Applies to currently referenced part.

Parameters

Desired box size.

Example

GEOMBOX 1

21. GEOMCYL XE "G:GEOMCYL"
Model

Syntax

GEOMCYL <frontradius backradius length [sides]>

Synopsis

Create a 3D cylinder of desired length. Cylinder has desired radius at front and back. Applies to currently referenced part.

Parameters

The desired front radius (at +z) back radius (at -z) length (along z), and the number of sides to use when making the cylinder.

Example

GEOMCYL 1 1.2 3 10

22. GEOMELLIPSE XE "G:GEOMELLIPSE"
Model

Syntax

GEOMELLIPSE <xradius yradius zradius>

Synopsis

Create a 3D ellipse of desired x,y,z radius. Applies to currently referenced part.

Parameters

Desired radius of the ellipse in x, y and z.

Example

GEOMELLIPSE 1 2 3

23. GEOMGET XE "G:GEOMGET"
Model

Syntax

GEOMGET

{1 geomcommand}
Synopsis

This method will return the geometry command that was used to define the geometry for the currently referenced part.

Parameters

None

Example

REFER box / GEOMGET

returns

1 REFER box / 1 GEOMGET GEOMBOX 0.5

24. GEOMLABEL XE "G:GEOMLABEL"
Model

Syntax

GEOMLABEL <textstring>
Synopsis

Create a text label. Applies to currently referenced part. Text is bill-boarded so as to always remain facing forward.

Parameters

Desired text string

Example

GEOMTEXT High Gain Antenna

25. GEOMNULL XE "G:GEOMNULL"
Model

Syntax

GEOMNULL

Synopsis

Sets currently referenced part to have no physical geometry

Parameters

Applies to currently referenced part.

Example

GEOMNULL

Or

REFER axle / GEOMNULL

26. GEOMOBJ XE "G:GEOMOBJ"
Model

Syntax

GEOMOBJ <objfile>
Synopsis

Load and set geometry to the specified wavefront file. Applies to currently referenced part.

Parameters

The file name or url address.

Example

GEOMOBJ galileo.obj

27. GEOMRECT XE "G:GEOMRECT"
Model

Syntax

GEOMRECT <sizex sizey sizez>

Synopsis

Create a 3D rectangle of desired length, width and height. Applies to currently referenced part.

Parameters

The desired length, width and height of rectangle.

Example

NAME rectangle

GEOMRECT 2 1 3

28. GEOMSPHER XE "G:GEOMSPHERE" E

Model

Syntax

GEOMSPHERE <radius>

Synopsis

Create a 3D sphere with desired radius. Applies to currently referenced part.

Parameters

Desired sphere radius.

Example

GEOMSPHERE 0.5

29. GEOMTEXT XE "G:GEOMTEXT"
Model

Syntax

GEOMTEXT <textstring>
Synopsis

Create a text label. Applies to currently referenced part.

Parameters

Desired text string

Example

GEOMTEXT High Gain Antenna

30. HINGE XE "H:HINGE"
Model

Syntax

HINGE[i] XE "H:HINGE0"

 XE "H:HINGE1"

 XE "H:HINGE2" <zx zy zz>

Query

HINGE[i]GET XE "H:HINGEGET"

 XE "H:HINGE0GET"

 XE "H:HINGE1GET"

 XE "H:HINGE2GET"

{1 HINGE[i]GET zx zy zz}

Synopsis

Defines a hinge for this part. A part can have up to three hinges, called hinge zero, one and two. HINGE and HINGE0 are identical commands and both refer to hinge zero. HINGE1 refers to hinge one, and HINGE2 refers to hinge two.

Parameters

A vector which specifies the hinge axis.

Example

HINGE 0 0 1

31. HINGEOFF XE "H:HINGEOFF"
Model

Syntax

HINGEOFF
Synopsis

Removes all currently defined hinges associated with the current part.

Parameters

None.

Example

HINGEOFF

32. HINGEFULL XE "H:HINGEFULL"
Model

Syntax

HINGEFULL
Synopsis

Defines three hinges on the currently referenced part and sets the hinge axes to be 1 0 0 for hinge zero, 0 1 0 for hinge one, and 0 0 1 for hinge two.

Parameters

None.

Example

HINGEFULL

33. INVISIBLE XE "I:INVISIBLE"
Model

Syntax

INVISIBLE
Synopsis

Make currently referenced part invisible. Does not affect sub-tree.

Parameters

None.

Example

INVISIBLE

34. LIGHTOFF XE "L:LIGHTOFF"
Model

Syntax

LIGHTOFF
Synopsis

Turn off default lighting.

Parameters

None.

Example

LIGHTOFF

35. LIGHTON XE "L:LIGHTON"
Model

Syntax

LIGHTON
Synopsis

Turn on default lighting.

Parameters

None.

Example

LIGHTON

36. LINE XE "L:LINE"
Model

Syntax

LINE <width [pattern]>
Query

LINEGET XE "L:LINEGET"

{1 LINEGET width pattern}

Synopsis

Sets desired line width for drawn lines. Applies to currently referenced part. Complex geometry primitives such as those loaded from WaveFront files may have lines predefined already, so this command is ignored for some primitives. DirectX does not support line width.

Parameters

Desired line width. Default line width is 1.0. Optional pattern style is zero for default solid lines, one for dashed, two for dot, and three for dash-dot.

Example

LINE 2

37. MATGET XE "M:MATGET"
Model

Syntax

MATGET

{1 matname matseep}

Synopsis

Returns material name and true or false, depending on whether mat seep flag is on (MATSEEPON) or off (MATSEEPOFF). Material name is equivalent to MAT[NAME] issued for the part. Applies to currently referenced part.

Parameters

None.

Example

MATGET

38. MATNAME XE "M:MATNAME"
Model

Syntax

MAT[NAME]

Synopsis

Use specified material properties when coloring this geometry. Applies to currently referenced part. Complex geometry primitives, such as those imported using file loaders, may have materials predefined already. Thus, this command may be ignored for some primitives. Predefined materials are: MATDEFAULT XE "M:MATDEFAULT" , MATEMERALD XE "M:MATERMERALD" , MATJADE XE "M:MATJADE" , MATOBSIDIAN XE "M:MATOBSIDIAN" , MATPEARL XE "M:MATPEARL" , MATRUBY XE "M:MATRUBY" , MATSILVER XE "M:MATSILVER" , MATTURQUOISE XE "M:MATTURQUOISE" , MATBRASS XE "M:MATBRASS" , MATBRONZE XE "M:MATBRONZE" , MATCHROME XE "M:MATCHROME" , MATCOPPER XE "M:MATCOPPER" , MATGOLD XE "M:MATGOLD" . When defining new material commands, command names should begin with MAT.

Parameters

Example

MATCOPPER

39. MATSEEPOFF XE "M:MATSEEPOFF"
Model

Syntax

MATSEEPOFF
Synopsis

When using a material, ignore the COLOR setting and use the color that is associated with the selected material. This is the default. Apples to currently referenced part.

Parameters

None.

Example

MATSEEPOFF

40. MATSEEPON XE "M:MATSEEPON"
Model

Syntax

MATSEEPON

Synopsis

When using a material, allow the COLOR setting to blend with the color of the selected material. Applies to currently referenced part.

Parameters

None.

Example

MATSEEPON

41. MODEL XE "M:MODEL"
Model

Syntax

MODEL <model.g [model.g …]>

Synopsis

Use to load in a simple model(s). Specified model file(s) should end in “.g”, should not have scripted commands, and should be located in a local directory called FS_MODEL. Automatically does a MODELCLEAR, loads the model(s) specified by filename, executes the FastScript3D commands contained therein and does a MODELBUILD.

Parameters

Filename, or filenames each separated by a black space.

Example

MODEL Stardust.g Earth.g

42. MODELBUILD XE "M:MODELBUILD"
Model

Syntax

MODELBUILD

Synopsis

Use to build model

Parameters

None.

Example

MODELCLEAR

MODELSOURCE spacecraft.g

MODELSOURCE antenna.g

MODELBUILD

43. MODELCLEAR XE "M:MODELCLEAR"
Model
Syntax

MODELCLEAR

Synopsis

Clears the current FastScript3D scene.

Parameters

none

Example

MODELCLEAR

44. MODELSOURCE XE "M:MODELSOURCE"
Model
Syntax

MODELSOURCE <modelname>

Synopsis

Load a new model in with the current scene. Does not clear existing scene and does not do a MODELBUILD automatically. Typically used to load in sub model files of large models.

Parameters

Filename

Example

MODELCLEAR

MODELSOURCE spacecraft.g

MODELSOURCE antenna.g

MODELBUILD

45. MOVABLE XE "M:MOVABLE"
Model

Syntax

MOVABLE[ON] XE "M:MOVABLEON"
Query
MOVABLEGET XE "M:MOVABLEGET"
{1MOVABLEGET true}

Synopsis

Currently referenced part is allowed to be both translated and oriented in the scene as desired. MOVABLE and MOVABLEON are equivalent. MOVABLEGET returns true if the part is movable and false otherwise.

Parameters

None.

Example

NAME basebody

MOVABLE

46. MOVABLEOFF XE "M:MOVABLEOFF"
Model

Syntax

MOVABLEOFF
Synopsis

Specifies that currently referenced part cannot to be translated or oriented in the scene. Parts are set to MOVABLEOFF by default.

Parameters

None.

Example

NAME basebody

MOVABLEOFF

47. NAME XE "N:NAME"
Model

Syntax

NAME <partname>

Synopsis

NAME creates a new part and sets it to be the currently referenced part.

Parameters

The desired name for the part.

Example

NAME camera

48. OFF XE "O:OFF"
Animate

Syntax

OFF[ALL] XE "O:OFFALL" [partname]

Query

OFF[ALL]GET XE "O:OFFALLGET" [partname]

{1 OFF[ALL]GET partname true}

Synopsis

Turn off specified part. OFF turns on part only, OFFALL turns off part and all parts in parts sub-tree. OFFGET returns true if the part is off, and OFFALLGET returns true if part sub-tree is off.

Parameters

The part name. If no part name is specified, defaults to Inertial.

Example

OFFALL rover

49. OFFSET XE "O:OFFSET"
Model

Syntax

OFFSET <x y z>

Query

OFFSETGET XE "O:OFFSETGET"
{1 OFFSETGET x y z}

Synopsis

Specifies offset of currently referred to part from parent. Applies to currently referenced part.

Parameters

Desired (x,y,z) offset.

Example

OFFSET 5 2 3

50. ON XE "O:ON"
Animate

Syntax

ON[ALL] XE "O:ONALL" [partname]

Query

ON[ALL]GET XE "O:ONALLGET" [partname]

{1 ON[ALL]GET partname true}

Synopsis

Turn on specified part. ON turns on part only, ONALL turns on part and all parts in parts sub-tree. ONGET returns true if the part is on, and ONALLGET returns true if part sub-tree is on.

Parameters

The part name. If no part name is specified, defaults to Inertial.

Example

ON plume

51. OPACITY XE "O:OPACITY"
Model

Syntax

OPACITY <opacity>

Query

OPACITYGET XE "O:OPACITYGET"
{1 OPACITYGET opacity}

Synopsis

Specifies transparency of currently referenced part. Parts are opaque with an opacity of zero by default. Opacity should be between zero and one, with zero being the least transparent and one being the most transparent.

Parameters

The desired opacity value.

Example

OPACITY <opacity>

52. ORIENTDCM XE "O:ORIENTDCM"
Model

Syntax

ORIENTDCM <x0 x1 x2 y0 y1 y2 z0 z1 z2>

Query

ORIENTDCMGET XE "O:ORIENTDCMGET"

{1 ORIENTDCMGET x0 x1 x2 y0 y1 y2 z0 z1 z2}

Synopsis

Specifies the desired orientation of the part by providing a DCM direction cosine matrix defining the x, y and z axis. DCM’s are cross product normalized.

Parameters

The desired direction cosine matrix describing how to orient the part.

Example

ORIENTDCM -1 0 0 0 -1 0 0 0 -1

53. ORIENTQ XE "O:ORIENTQ"
Model

Syntax

ORIENTQ <q0 q1 q2 q3>

Query

ORIENTQGET XE "O:ORIENTQGET"

{1 ORIENTQGET q0 q1 q2 q3}

Synopsis

Specifies the desired orientation of the part by providing a quaternion. Poorly defined quaternions are normalized to prevent anomalies.

Parameters

The desired quaternion describing how to orient the part.

Example

ORIENTQ 0 0 0 1

54. ORIENTTREEDCM XE "O:ORIENTTREEDCM"
Model

Syntax

ORIENTTREEDCM <x0 x1 x2 y0 y1 y2 z0 z1 z2>

Query

ORIENTTREEDCMGET XE "O:ORIENTTREEDCMGET"

{1 ORIENTTREEDCMGET x0 x1 x2 y0 y1 y2 z0 z1 z2}

Synopsis

Orients an entire sub-tree. Refers to the currently referred to part. Affects the part and all of its children. Use when constructing 3D model to reorient an entire already defined sub-tree.

Parameters

Same argument syntax as ORIENTDCM

Example

55. ORIENTTREEQ XE "O:ORIENTTREEQ"
Model

Syntax

ORIENTTREEQ <q0 q1 q2 q3>

Query

ORIENTTREEQGET XE "O:ORIENTTREEQGET"

{1 ORIENTTREEQGET q0 q1 q2 q3]

Synopsis

Orients an entire sub-tree. Refers to the currently referred to part. Affects the part and all of its children. Use when constructing 3D model to reorient an entire already defined sub-tree.

Parameters

Same argument syntax as ORIENTQ

Example

56. ORIENTTREEZ XE "O:ORIENTTREEZ"
Model

Syntax

ORIENTTREEZ <x y z [twist]>

Query

ORIENTTREEZGET XE "O:ORIENTTREEZGET"

{1 ORIENTTREEZGET x y z}

Synopsis

Orients an entire sub-tree. Refers to the currently referred to part. Affects the part and all of its children. Use when constructing 3D model to reorient an entire already defined sub-tree.

Parameters

Same argument syntax as ORIENTZ

Example

ORIENTTREEZ 1 0 0

57. ORIENTZ XE "O:ORIENTZ"
Model

Syntax

ORIENTZ <z0 z1 z2 [twist]}

Query

ORIENTZGET XE "O:ORIENTZGET"

{1 ORIENTZGET z0 z1 z2}

Synopsis

Grabs the part by it's z axis, and reorients it along the desired new axis, as defined by a vector. Optional twist about the axis is specified in degrees. If no twist is specified, it defaults to 0.0. ORIENTZGET returns the z-axis of the part’s orientation matrix. Applies to currently referenced part.

Parameters

The desired new z axis and optional twist.

Example

ORIENTZ 1 0 0

ORIENTZ 1 0 0 45

58. PARENT XE "P:PARENT"
Model

Syntax

PARENT <parentname>

Query

PARENTGET XE "P:PARENTGET"
{1 PARENTGET parentname}

Synopsis

Specifies the parent for the currently referenced part. All parts must have a parent with the exception of Inertial, which is always the first part defined in a scene. If no parent is specified for a part the parent is assumed to be Inertial.

Parameters

The name of the parent part.

Example

PARENT Inertial

59. PICKED XE "P:PICKED"
Animation

Syntax

PICKED <partname x y z mousex mousey>
Synopsis

When pick-able objects are clicked with the mouse, this command is generated.

Parameters

The name of part picked, the x,y,z intersection point found and the mouse x,y location of the mouse click.

Example

PICKED box 0.5 0.5 0.7 180 200

60. PICKOFF XE "P:PICKOFF"
Model

Syntax

PICKOFF
Synopsis

Stops currently referenced part from being pick-able.

Parameters

None.

Example

PICKOFF

61. PICKON XE "P:PICKON"
Model

Syntax

PICKON

Query

PICKGET XE "P:PICKGET"

{1 PICKGET true}

Synopsis

Make currently referenced part pick-able.

Parameters

None.

Example

PICKON

62. PLAINLIGHTOFF XE "P:PLAINLIGHTOFF"
Model

Syntax

PLAINLIGHTOFF

Synopsis

Clears any PLAINLIGHTON setting so that part renders normally according to whether lighting is on or off. PLAINLIGHTOFF is the default setting for a part. Applies to currently referenced part.

Parameters

None.

Example

PLAINLIGHTOFF

63. PLAINLIGHTON XE "P:PLAINLIGHTON"
Model

Syntax

PLAINLIGHTON
Query
PLAINLIGHTGET XE "P:PLAINLIGHTGET"
{1 PLAINLIGHTGET true}

Synopsis

Makes currently referred to part render without lighting, even if lighting is on. This works well for some geometry such as lines, which often look best without lighting. PLAINLIGHTGET returns true if lighting for this part is disabled and false otherwise.

Parameters

None.

Example

PLAINLIGHTON

64. PLAYAUTOOFF XE "P:PLAYAUTOOFF"
Sim

Syntax

PLAYAUTOOFF
Synopsis

Simulation will stop after last frame is played. Applies to currently referenced simulation.

Parameters

None

Example

PLAYAUTOOFF

65. PLAYAUTOON XE "P:PLAYAUTOON"
Sim

Syntax

PLAYAUTOON

Query
PLAYAUTOGET XE "P:PLAYAUTOGET"

{1 PLAYAUTOGET true}

Synopsis

When the last frame is played, the simulation will reset automatically to frame zero and continue to play. Applies to currently referenced simulation. PLAYAUTOGET returns true if play auto is set and false otherwise.

Parameters

None

Example

PLAYAUTOON

66. PLAYFRAME XE "P:PLAYFRAME"
Sim

Syntax

PLAYFRAME <framenum>

Synopsis

Set simulation to specified frame number, and plays the frame. This is equivalent a PLAYSETFRAME command followed by PLAYNEXT command. Current frame after command is done is framenum+1.

Parameters

The desired frame number to play.

Example

PLAYFRAME 50

67. PLAYGET XE "P:PLAYGET"
Sim

Syntax

PLAYGET

{1 PLAYGET currentframe}
Synopsis

Returns the current frame number. Applies to currently referenced simulation.

Parameters

None

Example

PLAYGET

68. PLAYNEXT XE "P:PLAYNEXT"
Sim

Syntax

PLAYNEXT
Synopsis

Plays the current frame and moves to next. Applies to currently referenced simulation.

Parameters

None

Example

PLAYSETFRAME 10

PLAYNEXT

69. PLAYRESET XE "P:PLAYRESET"
Sim

Syntax

PLAYRESET
Synopsis

Reset simulation back to frame zero. Plays frame zero. Applies to currently referenced simulation.

Parameters

None

Example

PLAYRESET

70. PLAYRUN XE "P:PLAYRUN"
Sim

Syntax

PLAYRUN [simname]
Synopsis

Start playing specified simulation.

Parameters

An optional argument specifies the simulation to run. If no simulation name is provided, the PLAYRUN command applies to the currently referenced simulation.

Example

PLAYRESET

PLAYRUN

71. PLAYSETFRAME XE "P:PLAYSETFRAME"
Sim

Syntax

PLAYSETFRAME <framenum>

Synopsis

Set simulation to specified frame number. Applies to currently referenced simulation.

Parameters

Specifies the desired frame number.

Example

PLAYSETFRAME 50

72. PLAYSKIP XE "P:PLAYSKIP"
Sim

Syntax

PLAYSKIP <skipframes>

Query

PLAYSKIPGET XE "P:PLAYSKIPGET"

{1 PLAYSKIPGET skipframes}

Synopsis

Specifies the frame advance rate. Applies to the currently referenced simulation. The default skip value is zero, since the currently referenced simulation is normally played one frame at a time. A skip rate higher than zero causes a desired number of frames to be skipped after a given frame is played. For example, a skip rate of 1 causes only every other animation frame to be executed when the simulation is played. Note that commands in frames that are skipped are not executed.

Parameters

Specify the number of frames to skip after a played frame.

Example

PLAYSKIP 2

73. PLAYSTOP XE "P:PLAYSTOP"
Sim

Syntax

PLAYSTOP [simname]
Synopsis

Stop playing specified simulation

Parameters

An optional sequence name specifies the sequence to stop. If no sequence name is provided, the PLAYSTOP command applies to the currently referenced simulation.

Example

PLAYSTOP

74. POINT XE "P:POINT"
Model

Syntax

POINT <size>

Query

POINTGET XE "P:POINTGET"
{1 POINTGET size}

Synopsis

Sets desired point size for drawn points. Complex geometry primitives such as those created using file loaders may have point size predefined already, so this command is ignored for some primitives. DirectX does not support point size.

Parameters

Desired point size. Default point size is 1.0.

Example

POINTSIZE 2

75. Q XE "Q:Q"
Animate

Syntax

Q <partname q0 q1 q2 q3>

Query

QGET XE "Q:QGET"
{1 QGET partname q0 q1 q2 q3}

Synopsis

Specifies the desired orientation of the part during animation by providing a quaternion. Poorly defined quaternions are normalized to prevent anomalies. Part must be MOVABLE.

Parameters

Specify the desired part and quaternion describing how to orient it.

Example

Q spacecraft 0 0.45 0 0.89

76. RA XE "R:RA"

 XE "R:RA0"

 XE "R:RA1"

 XE "R:RA2"
Animate

Syntax

RA[i] <partname degrees>

Query

RA[i]GET XE "R:RAGET"

 XE "R:RA0GET"

 XE "R:RA1GET"

 XE "R:RA2GET" partname

{1 RAGET partname degrees}
Synopsis

Perform absolute rotation about part hinge by specified number of degrees. RA is the same as RA0 and refers to HINGE0. RA1 refers to HINGE1 and RA2 refers to HINGE2. If no corresponding hinge has been defined for the part, the command is ignored. RA[i]GET returns the current absolute rotation angle for the specified hinge.

Parameters

Specifies the part name and desired degrees of rotation about the parts corresponding hinge.

Example

RA solarpanel 45.0

77. RCLEAR XE "R:RCLEAR"
Animate

Syntax

RCLEAR <partname>
Synopsis

Clear all hinge rotations for specified part. Rotation about HINGE, HINGE1 and HINGE2 are all set to zero.

Parameters

The name of the part for which rotations about defined hinges should be cleared.

Example

RCLEAR wheel

78. RCLEARALL XE "R:RCLEARALL"
Animate

Syntax

RCLEARALL

Synopsis

Clear all hinge rotations for all articulated parts. The command clears rotations about HINGE, HINGE1 and HINGE2 for all parts using articulation.

Parameters

None.

Example

RCLEARALL

79. REFER XE "R:REFER"
Animate

Syntax

REFER <partname>

Query

REFERGET XE "R:REFERGET"
{1 REFERGET partname}

Synopsis

Makes specified part the currently referenced part.

Parameters

Specifies the name of part to make current.

Example

REFER probe

80. REFERSIM XE "R:REFERSIM"
Animate

Syntax

REFERSIM <simname>

Query

REFERSIMGET XE "R:REFERSIMGET"
{1 REFERSIMGET simname}

Synopsis

Specifies the sequence being referred to in subsequent commands.

Parameters

The name of the sequence to reference is provided.

Example

REFERSIM orbit

81. RESET XE "R:RESET"
Animate

Syntax

RESET

Synopsis

Clear all view and mouse actions and set view back to default.

Parameters

None.

Example

RESET

82. RR XE "R:RR"
Animate

Syntax

RR[i] XE "R:RR0"

 XE "R:RR1"

 XE "R:RR2" <partname degrees>
Synopsis

Perform relative rotation about part hinge by specified number of degrees. RR is the same as RR0 and refers to HINGE0. RR1 refers to HINGE1 and RR2 refers to HINGE2. If no corresponding hinge has been defined for the part, the command is ignored.

Parameters

The part name identifies the desired part. The desired amount of rotation about the corresponding hinge is specified in degrees. Rotation is relative to the current rotation about the hinge.

Example

RR solarpanel 3.0

83. SCALELOCAL XE "S:SCALELOCAL"
Model

Syntax

SCALELOCAL <x [y z]>

Query
SCALELOCALGET XE "S:SCALELOCALGET"

{1 SCALELOCALGET x y z}

Synopsis

Scales currently referenced part in x, y and z by specified amounts. Sub-tree is not affected. Used to scale geometry to a new size. Affects geometry of currently referenced part.

Parameters

Desired scale factor in x, y and z. If y and z are omitted they are assumed equal to x.

Example

SCALELOCAL 2

84. SCALEPRE XE "S:SCALEPRE"
Model

Syntax

SCALEPRE <x [y z]>

Query
SCALEPREGET XE "S:SCALEPREGET"
{1 SCALEPREGET x y z}

Synopsis

Scales currently referred to part in x, y and z by specified amounts. Sub-tree is not affected. Used to pre-scale model geometry to an initial desired size.

Parameters

Desired scale factor in x, y and z. If y and z are omitted they are assumed equal to x.

Example

SCALEPRE 1.5

85. SCALETREE XE "S:SCALETREE"
Animate

Syntax

SCALETREE <partname x [y z]>

Query
SCALETREEGET XE "S:SCALETREEGET" <partname>

{1 SCALETREEGET partname x y z}

Synopsis

Scales specified part in x, y and z by desired amounts. Entire sub-tree is also scaled. Used to scale an entire sub-tree’s geometry to desired size.

Parameters

Desired scale factor in x, y and z. If y and z are omitted they are assumed equal to x.

Example

SCALETREE basebody 2 1 1.5

86. SIM XE "S:SIM"

Sequence

Syntax

SIM <simfile.sim [simname] [size]>

Synopsis

Use to load in a simple simulation. Specified simulation file should end in “.sim”, should not have scripted commands, and should be located in a local directory called FS_SIM. Initializes a new simulation sequence and loads it with the FastScript3D commands in the specified file. The simulation becomes the currently referenced simulation.

Parameters

The file name parameter specifies the name of the file containing the sequence commands and the desired name for the sequence. If no name is given, then the default name, “sim”, is used as the name (note this will overwrite any previously existing sequence called “sim”). The SIM size parameter is optional and lets FastScript3D know the approximate size of the sequence.

Example

SIM sunsearch.sim

87. SIMDELETEALL XE "S:SIMDELETEALL"
Sequence

Syntax

SIMDELETEALL

Synopsis

Clears and then deletes all currently defined simulation sequences.

Parameters

None.

Example

SIMDELETEALL

88. SIMDELETE XE "S:SIMDELETE"
Sequence

Syntax

SIMDELETE <[simname]>

Synopsis

Clears and then deletes the specified sequence. If no name is specified, then the currently referenced sequence is deleted.

Parameters

Specifies the name of the sequence to delete.

Example

SIMCLEAR 20

89. SIMGET XE "S:SIMGET"
Sequence

Syntax

SIMGET

 {1 SIMGET simname size}

.

Synopsis

The query function SIMGET returns the name and size of the currently referenced sequence.

Parameters

None.

Example

SIMGET

90. SIMNAME XE "S:SIMNAME"
Sequence

Syntax

SIMNAME <simname [size]>

.

Synopsis

Initialize a sequence and gives it the specified name. The sequence becomes the currently referenced sequence.

Parameters

Creates a new simulation with the specified name. The SIM size parameter is optional and lets FastScript3D know the approximate size of the simulation. The query function SIMGET returns the name and exact size of the currently referenced simulation.

Example

SIMNAME sunsearch

91. START XE "S:START"
Animate

Syntax

START
Synopsis

Start the renderer. By default the renderer is on. Use STOP and START as a sandwich around commands that are to be displayed as occurring simultaneously. Commands separated by the delimiter “/” have the same effect.

Parameters

None.

Example

STOP

RR solarpanel1 5

RR solarpanel2 5

START

92. STOP XE "S:STOP"
Animate

Syntax

STOP
Synopsis

Stop the renderer. By default the renderer is on. Use STOP and START as a sandwich around commands that are to be displayed as occurring simultaneously. Commands separated by the delimiter “/” have the same effect.

Parameters

None.

Example

STOP

RR solarpanel1 5

RR solarpanel2 5

START

93. TA XE "T:TA"
Animate

Syntax

TA <partname x y z>

Query
TAGET XE "T:TAGET" partname

{1 TAGET partname x y z}

Synopsis

Perform absolute translation of part to specified location. If part is not MOVABLE, the command is ignored.

Parameters

The part name and desired absolute location.

Example

TA basebody 0 0 0

94. TEXTURE XE "T:TEXTURE"
Model

Syntax

TEXTURE <texturename>

Query
TEXTUREGET XE "T:TEXTUREGET"

{1 TEXTUREGET texturename}

Synopsis

Use specified texture on this part's geometry. Applies to currently referenced part. If the part's geometry primitive does not handle texture mapping, this will be ignored. It will also be ignored if texture maps are pre-specified as part of the geometry.

Parameters

The desired texture map.

Example

TEXTURE Earth.jpg

95. TR XE "T:TR"
Animate

Syntax

TR <partname x y z>
Synopsis

Perform relative translation of part to specified location. If part is not MOVABLE, the command is ignored.

Parameters

The part name and desired location.

Example

TR basebody 0 0 0.1

96. VIEWER XE "V:VIEWER"
Model

Syntax

VIEWER <distance>

Query

VIEWERGET XE "V:VIEWERGET"
{1 VIEWERGET distance}

Synopsis

Sets the initial view distance from the center of the scene. To back off and view the scene from further away, increase the view distance. VIEWERGET returns the current view distance. The default view distance is 2.41.

Parameters

Desired view distance.

Example

VIEWER 10

97. VISIBLE XE "V:VISIBLE"

Model

Syntax

VISIBLE

Query
VISIBLEGET XE "V:VISIBLEGET"

 {1 VISIBLEGET true}

Synopsis

Make currently referred to part visible. Does not affect sub-tree. VISIBLEGET returns true if part is visible and false otherwise. Use the ONALLGET command to check visibility of an entire sub-tree.

Parameters

None.

Example

VISIBLE

98. Z XE "Z:Z"
Animate

Syntax

Z <partname x y z [twist]>

Query

ZGET XE "Z:ZGET" <partname>

{1 ZGET partname x y z}

Synopsis

Grabs the part by it's z axis, and reorients it along the desired new axis, as defined by a vector. Used to orient the part during animation. Optional twist about the axis is specified in degrees.

Parameters

The desired new z axis and twist about it.

Example

Z 1 0 0 20

Index

#, 65

A
ADD, 65

B
BGCOLOR, 66

BGCOLORGET, 66

C
COLOR, 66

COLORGET, 66

D
DCM, 67

DCMGET, 67

DELETE, 67

DELETEALL, 67

DEMO, 68

E
ECHOOFF, 68

ECHOON, 68

F
FNEXT, 69

FNUM, 69

FNUMGET, 69

FONT, 70

FONTALL, 70

FONTALLGET, 70

FONTGET, 70

G
GEOMAXIS, 71

GEOMBOX, 71

GEOMCYL, 71

GEOMELLIPSE, 72

GEOMGET, 72

GEOMLABEL, 72

GEOMNULL, 73

GEOMOBJ, 73

GEOMRECT, 73

GEOMSPHERE, 74

GEOMTEXT, 74

H
HINGE, 74

HINGE0, 74

HINGE0GET, 75

HINGE1, 74

HINGE1GET, 75

HINGE2, 74

HINGE2GET, 75

HINGEFULL, 75

HINGEGET, 75

HINGEOFF, 75

I
INVISIBLE, 75

L
LIGHTOFF, 76

LIGHTON, 76

LINE, 76

LINEGET, 77

M
MATBRASS, 77

MATBRONZE, 77

MATCHROME, 77

MATCOPPER, 78

MATDEFAULT, 77

MATERMERALD, 77

MATGET, 77

MATGOLD, 78

MATJADE, 77

MATNAME, 77

MATOBSIDIAN, 77

MATPEARL, 77

MATRUBY, 77

MATSEEPOFF, 78

MATSEEPON, 78

MATSILVER, 77

MATTURQUOISE, 77

MODEL, 78

MODELBUILD, 79

MODELCLEAR, 79

MODELSOURCE, 80

MOVABLE, 80

MOVABLEGET, 80

MOVABLEOFF, 80

MOVABLEON, 80

N
NAME, 81

O
OFF, 81

OFFALL, 81

OFFALLGET, 81

OFFSET, 81

OFFSETGET, 82

ON, 82

ONALL, 82

ONALLGET, 82

OPACITY, 82

OPACITYGET, 82

ORIENTDCM, 83

ORIENTDCMGET, 83

ORIENTQ, 83

ORIENTQGET, 83

ORIENTTREEDCM, 84

ORIENTTREEDCMGET, 84

ORIENTTREEQ, 84

ORIENTTREEQGET, 84

ORIENTTREEZ, 85

ORIENTTREEZGET, 85

ORIENTZ, 85

ORIENTZGET, 85

P
PARENT, 85

PARENTGET, 86

PICKED, 86

PICKGET, 87

PICKOFF, 86

PICKON, 86

PLAINLIGHTGET, 87

PLAINLIGHTOFF, 87

PLAINLIGHTON, 87

PLAYAUTOGET, 88

PLAYAUTOOFF, 88

PLAYAUTOON, 88

PLAYFRAME, 88

PLAYGET, 89

PLAYNEXT, 89

PLAYRESET, 90

PLAYRUN, 90

PLAYSETFRAME, 90

PLAYSKIP, 91

PLAYSKIPGET, 91

PLAYSTOP, 91

POINT, 91

POINTGET, 92

Q
Q, 92

QGET, 92

R
RA, 92

RA0, 92

RA0GET, 92

RA1, 92

RA1GET, 92

RA2, 92

RA2GET, 92

RAGET, 92

RCLEAR, 93

RCLEARALL, 93

REFER, 94

REFERGET, 94

REFERSIM, 94

REFERSIMGET, 94

RESET, 94

RR, 95

RR0, 95

RR1, 95

RR2, 95

S
SCALELOCAL, 95

SCALELOCALGET, 95

SCALEPRE, 95

SCALEPREGET, 96

SCALETREE, 96

SCALETREEGET, 96

SIM, 96

SIMDELETE, 97

SIMDELETEALL, 97

SIMGET, 98

SIMNAME, 98

START, 98

STOP, 99

T
TA, 99

TAGET, 99

TEXTURE, 100

TEXTUREGET, 100

TR, 100

V
VIEWER, 100

VIEWERGET, 101

VISIBLE, 101

VISIBLEGET, 101

Z

Z, 101

ZGET, 101

PAGE
5

